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Abstract
One of the most energy-intensive processes in wireless

sensor networks (WSNs) is radio communication, which can
be minimized with data compression techniques by using the
inherent existence of spatial and temporal correlations in the
physical phenomena. Exploiting the two correlation types
with low algorithmic overhead in a distributed scenario is
challenging. This work proposes PKF-ST, a technique that
uses a predictor combined with Kalman filter (KF) to re-
duce the transmission rate for cluster-based WSNs. Each
leaf node uses a reduced-order state space model to inde-
pendently compress its own data based on temporal correla-
tion. To improve the reconstruction quality, the cluster head
uses a KF with the full-order model. Without any intra-
communication, the energy cost of each node is further re-
duced with the help of the spatial correlation. Compared to
traditional temporal compression algorithms, PKF-ST maxi-
mizes the utilization of temporal correlation; compared with
the techniques using spatial correlation, PKF-ST works inde-
pendently of the networks size and without any coordinator.
The simulation results with both artificial signals and real
temperature values demonstrate the efficiency of PKF-ST.
Compared with a previous technique using spatial-temporal
compression, it reduces the reconstruction error by 75.8 %.
Categories and Subject Descriptors

H.3.3 [Spatial-temporal systems]: Sensor networks;
C.4.1 [Dependable and fault-tolerant systems and net-
works]: Reliability; D.7 [Network services]: In-network
processing
General Terms

Algorithms, Performance, Reliability
Keywords

Wireless sensor networks, enery efficiency, data compres-
sion, spatial and temporal correlation, Kalman filter

1 Introduction
In almost any application of WSNs, energy efficiency is

a primary concern. As widely recognized, one of the most
energy-intensive processes of a sensor node is the wireless
communication [13]. In a classical architecture for instance,
a single bit transmission can consume over 1000 times more
energy than a single 32-bit computation [13]. In addition to
the energy consumption of data packets transmission, extra
energy is also required by overhead activities, such as radio
start-up, channel accessing, control packets, turnaround, idle
listening, overhearing, and collision as analyzed in [5]. Thus,
most of the WSN research focuses on developing energy ef-
ficient schemes for reducing the communication cost.

Data compression techniques are very attractive due to
the inherent existence of spatial and temporal correlations in
the physical phenomena [16]. They aim to reduce either the
packet size or the transmission rate. The existing algorithms
for packet size compression typically refer to dictionary-
based compression [12], [14] or predictive coding [9]. Even
if these techniques are able to compress the data size with
a high compression ratio, they are incapable of reducing the
overheads of each transaction which can dominate the energy
consumption in some cases [5]. In contrast, the schemes for
transmission rate compression can decrease the total com-
munication energy cost during the transaction [11], [3], [8],
and are therefore preferred.

Upon temporal compression, some techniques further ex-
ploit spatial correlation to decrease communication cost. For
example, in [18], the node intercepts the information from
its neighbors to compress its own data. Similarly, in [2],
the node receives the model parameters from its neighbors
to decide whether to transmit its own parameters to the
head. However, these methods require intra-communication
among nodes. Without this communication, an energy-
efficient data collection framework, EEDC, is proposed in
[11]. Each node stores the latest sampling values until its
buffer is full and calculates the line segments approximating
the original time series. The transmission rate is reduced by
only transmitting the end points of every line segment. To
further reduce communication cost, the cluster head selects
an appropriate number of nodes to be active to satisfy the re-
quirement of reconstruction quality. A similar approach by
using spatial correlation can also be found in [15]. Although
these approaches do not require intra-communication, they
need to store enough samples and need a coordinator to ex-
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ploit spatial correlation. Those processes are expensive. In
contrast, a novel sensing theory, compressive sensing (CS)
[1], achieves temporal and spatial compression without any
intra-communication and additional coordinator. It promises
a reconstruction of a sparse signal by using a sampling rate
significantly below the Nyquist rate. The sparser the signal
is, the less sampling rate CS requires. However, the density
of the network and the data points that it randomly selects in
temporal and spatial domain affect the quality of the recon-
structed signals.

Because of the manageable complexity and low memory
requirement, the Kalman filter (KF) has been widely used
in WSNs (in applications, e.g., target tracking, outlier detec-
tion, data fusion, etc); it makes KF an ideal candidate for a
hardware accelerator and encourages its use for data com-
pression as well. A recent approach [4] based on KF selects
the transmission points employing an error bound in the time
domain instead of random sampling. The technique, called
PKF (predictor combined with Kalman filter), provides an
energy efficient communication cost reduction scheme for
cluster-based WSNs. However, it does not take full advan-
tage of the spatial correlation.

This work, called PKF-ST, improves the original PKF
scheme, by efficiently utilizing the spatial temporal corre-
lation among nodes and provides two major innovations:
• In contrast to existing techniques, it maximizes the

utilization of temporal correlation by transmitting the
data-points violating the threshold in the time domain.

• It exploits the spatial correlation in the cluster
head (instead of the leaf nodes) without any intra-
communication, without any coordinator, and indepen-
dent of the network size.

The rest of this paper is organized as follows. Sec-
tion 2 introduces the PKF approach and presents the pro-
posed PKF-ST scheme. Section 3 estimates the efficiency
of PKF-ST by using both artificial and real signals. In Sec-
tion 4, we conclude our work and present future research
directions.
2 PKF-ST Approach based on Multivariate

Temporal and Spatial Correlations
PKF-ST is based on PKF. In this section, we briefly re-

view the PKF scheme and its underlying philosophy. The
interested reader is referred to [4] and [6] for a more detailed
explanation. Afterwards we improve it using multivariate
temporal and spatial correlations.
2.1 PKF Approach

PKF aims to reduce the communication cost between leaf
node and cluster head for cluster-based WSNs. The main
idea behind PKF is to suppress the transmission of a leaf
node at a time step, if the cluster head is able to predict the
current data with a tolerable error using the previously re-
ceived data.

Fig. 1 depicts the block diagram of PKF. Each node is
required to firstly execute a KF to filter the noise of the mea-
surement, z(k), and produce Kalman-optimal values, x̂(k).
In order to reduce the communication energy cost, the clus-
ter head uses a simple predictor, Pk f , to predict the Kalman-
optimal values, x̃(k). To guarantee the prediction quality, the

leaf node synchronously runs this predictor to follow the pre-
diction of the cluster head and compare the forecast with its
optimal value. If the prediction error, ε(k), exceeds a given
threshold, τ, the current optimal value is transmitted to the
cluster head. Note that this predictor is equivalent to a k-step
ahead Kalman predictor.

The value of the threshold τ provides a trade-off between
communication energy cost and the reconstruction quality,
which can be adapted to the requirement of a specific ap-
plication. Observe that this scheme guarantees a maximum-
error bound.

2.2 PKF-ST Approach
The spatial and temporal correlation between multi-nodes

can be modeled as a multivariate state space. If the measure-
ments of each node are correlated, a PKF approach using
this multivariate model (full-order) produces better predic-
tions than using a univaritate one. However, the approach
would require each node to communicate with its neighbors
or transmit more states than needed. This drastically reduces
the energy savings. To avoid the intra-communication and
extra transmission while keeping the advantages of PKF, we
present our PKF-ST approach. The basic idea is: each node
uses a reduced order model to execute the standard PKF ap-
proach; afterwards, a full order KF is executed in the clus-
ter head by utilizing the spatial correlation to improve the
prediction quality. Key for this idea to work is the precise
analysis of the requirements for the full order KF which is
executed in the cluster head.

To characterize the spatial and temporal correlation be-
tween n nodes, we model the dynamics of their processes
using a multivariate stochastic full model mf as follows:

X(k) = FX(k−1)+BU(k)+W (k)
Z(k) = HX(k)+V (k)

(1)

where X(k) and Z(k) are the real values and noisy observa-
tions of n nodes at time k, respectively. F is the full transi-
tion matrix, which represents the correlation structure among
nodes; B is the control matrix and U(k) is the control input;
H is a identity matrix; W (k) and V (k) are vectors of the pro-
cess noise and measurement noise of each node.

Similar to PKF, the system parameters, e.g., F , B and H,
in PKF-ST can be both time variant and invariant. For time
invariant systems, these parameters can be found offline by
analyzing the historical data as done in Section 3, while for
time variant systems, they can be updated using offline or
online methods, e.g., an approach in [17].

The maximal compression of a PKF-like approach can be
achieved by considering one ideal element (i.e., an oracle),
which knows all measurements from each node and uses a
full-order model. Although this is unpractical, it is useful to
characterize how close a real approach to the ideal case is.
We call it PKF-ideal. Taking a cluster with three neighbor-
ing nodes, N1, N2 and N3, and a cluster head for example.
The oracle knows all data from these three nodes as shown
in Fig. 2. It controls the transmission of each node by us-
ing PKF encoder and produces the optimal values X̂(k). For
those elements whose predictions are not accurate, the cor-
responding elements in X̂(k) are transmitted. For example,
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Figure 1: The block diagram of PKF.

the prediction error of N1 exceeds the threshold at time k, the
first element in vector X̂(k) is transmitted. The cluster head
predicts the multivariate optimal values and updates the pre-
dictions with the corresponding PKF decoder.
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Figure 2: The architecture of PKF-ideal using spatial corre-
lation in an oracle.

A direct implementation of PKF-ideal is too inefficient.
Each node needs to either receive the measurements from
its neighbors with more intra-communication cost or up-
date the multivariate predictions using its own measurements
with more inaccuracy. But in both cases, the node needs
to transmit n variables if the prediction is inaccurate. To
solve this problem, PKF can be executed independently us-
ing a reduced-order model. This scheme is called PKF-idp.
The order of the model can be selected depending on the
overhead of the communication. If the overhead is large,
the transmission bits have less impact on the communication
cost, then we can use a larger order model and vice versa.

For example, the reduced-order model of N1, denoted as
mr, is formulated as:

x1(k) = a1x1(k)+b1U(k)+ w̄(k)
z1(k) = h1x1(k)+ v1(k)

(2)

where w̄(k)∼ N(0, q̄).
Each node uses mr to execute PKF encoder indepen-

dently. When the prediction of the cluster head using the
corresponding PKF decoder is not accurate, the states with
less variables are transmitted. PKF-idp avoids the transmis-
sion of all states while the prediction quality is decreased due
to the unused spatial correlation.

Since the cluster head has all information of each node,
it can utilize the spatial correlation to improve the quality of
the reconstructions produced by PKF-idp. Then the compu-

tational complexity is shifted from the leaf node to the clus-
ter head. Here we use a full-order KF as shown in Fig. 3.
After using PKF-idp to produce the reconstructions of each
node z̄i(k), the KF treats these reconstructions as noisy mea-
surements but with time variant noise R̄i(k) which is related
to ni, the number of step ahead that z̄i(k) comes from. This
technique is called PKF-ST.

Figure 3: The architecture of PKF-ST using spatial correla-
tion in cluster head without intra-communication.

More specifically, let us start the analysis after a trans-
mission, so that x̃i(0) = x̂i(0) and the prediction error is zero.
The k-step ahead prediction, x̃i(k)= ak

i x̂i(0) evolves from the
optimal value with a random error εi(k) = hi

[
x̃i(k)− x̂i(k)

]
,

where εi(k) is distributed normally with zero mean and vari-
ance σ2

k . If z̄i(k) is from k−step ahead, the error comparing
with the real states, ei(k) = z̄i(k)− hixi(k), can be approx-
imated as a normal distribution with a time variant vari-
ance R̄i(k) in each step as analyzed in [6]. In a naive way,
we can take all errors together to get a time invariant mea-
surement noise R̄i. However, all errors together do not have
Gaussian distribution. The data produced by KF using R̄i
should be worse than using the time variant R̄i(k) for each
time step. Thus, we use an indicator ni to indicate which
step ahead z̄i(k) comes from and adjust the corresponding
variance R̄i(k) in KF. Then the full order KF becomes to be
time variant with a variant R̄i(k) for each node at different
time step. It produces the final reconstructions, ¯̄zi(k), using
neighbors’ information.
3 Simulation results

In this section, we aim to estimate the efficiency of PKF-
ST through the trade-off between transmission rate and re-
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construction accuracy. Since it is a model based approach,
its performance is affected by the accuracy of the model. In
order to avoid the estimation bias caused by the uncertainty
of the system model, we firstly generate an artificial system.
Then we use real temperatures to demonstrate that even if
the model is not perfect, PKF-ST still works more efficiently
than other techniques.
3.1 Artificial System

We construct a representative 3-variate system without
control input and simulate it to generate 216 samples per

node. The transition matrix F =

[ 0.9 0.02 0.1
0.02 0.6 0.4
0.1 0.4 0.4

]
is con-

structed on the basis that N1 has strong temporal correlation
and small spatial correlation with its two neighbors, while
N2 and N3 are affected a lot by each other, especially N3.
Thus we cover those cases when only temporal correlation
can be used, and those when both correlations can be used.
The pseudo-random values of the noise are drawn from the
standard normal distribution. The process noise of each node
is independent with the same variance Qi = 0.36, while the
independent measurement noise have variances R1 = 0.01,
R2 = 0.04 and R3 = 0.09.

In order to apply PKF-ST, we calculate a reduced order
model, mr, for each node. The parameter a of each system
is the corresponding diagonal element of matrix F . The sys-
tem noise q̄ is obtained by taking neighbors’ information as
unknown elements (noise). The example is selected to cover
different possibilities for a which ranges from 0.4 to 0.9, and
q̄ which ranges from 0.4 to 1.5.

Firstly we analyze the efficiency of PKF-ST in reducing
the communication cost and improving prediction quality.
As depicted in Fig. 4a, 4b and 4c, the covariance of recon-
struction errors increases along with the transmission rate de-
creases. PKF-ideal compresses maximally the transmission
rate under the same reconstruction quality constraints. The
larger the spatial correlation is, the better performance PKF-
ideal achieves. Due to model reduction, PKF-idp has larger
reconstruction errors using the same transmission rate. Com-
pared to PKF-ideal, the performance of PKF-idp decreases
as the spatial correlation increases. There is no big differ-
ence between them in node 1 who has small correlation with
its neighbors, while in node 2 and node 3, especially node 3,
PKF-idp performs much worse.

In contrast, by using spatial correlation in the cluster
head, PKF-ST improves the reconstruction quality of PKF-
idp without any intra-communication. The efficiency of
PKF-ST lies between that of PKF-idp and PKF-ideal. For
example, a maximum transmission rate in node 3 of 20%
would allow a reconstruction error around 0.4C2 for PKF-
ST, while PFK-idp produces errors larger than 0.8C2. The
best achievable reconstruction is around 0.2C2.

Next we analyze the impact of time variant KF on the
quality of reconstructions. Firstly, we study the distribu-
tion of the errors. As an example, we consider node 2 when
τ = 0.4. The distribution of all errors, z̄2− h2x2, has a vari-
ance R̄2 = 0.0549. They are produced by 11 different steps
ahead predictions. The noise from the first 2 steps ahead
have the variance 0.0386 and 0.0928 respectively. Clearly

the values are very different. Now we measure the improve-
ments in reconstruction achieved when the differences in the
variance are considered. Compared to the naive method that
uses a time invariant variance, R̄2, our PKF-ST achieves bet-
ter reconstruction quality as illustrated in Fig. 5a, 5b and
5c. The improvements increase as the spatial correlation in-
creases. For example, a maximum transmission rate in node
3 of 20% would allow a reconstruction error around 0.4C2

for PKF-ST, while the invariant approaches produces errors
larger than 0.7C2, very close to the 0.8C2 of PKF-idp. The
results are reasonable: by using more information of the sig-
nal, more accurate data can be reconstructed.

3.2 Real temperature values
In this study we use the temperature values from LUCE

[7] to further illustrate the efficiency of PKF-ST and com-
pare it with EEDC [10]. The data is collected by Shockfish
TinyNode at intervals of 30 seconds across the EPFL cam-
pus. We use the data between 15:20, 2nd, November and
8:26, 3rd, November from node 3, node 5, node 44 and node
45 as our datasets since these traces have less packet loss and
the measurements are more precise.

By using Matlab system identification toolbox to fit these
2103 measurements, we can find the system parameters of
m f . The model is constructed on the basis that the matrix
H is a 4× 4 identity matrix. The a matrix of the reduced
order model, mr, of each node keeps the corresponding diag-
onal element of F ; the system noise q̄ is obtained by taking
neighbors’ states as noise.

We take the optimal values generated by the KF using
the full-order model m f as the real system states, since the
temperature values without noise are not available. Using
this reference we analyze the trade-off between transmission
rate and reconstruction error (see Fig. 6 and Fig. 7 for the
different techniques). We use EEDC [10] as a reference: it
provides good temporal compression; the spatial correlation
method it uses is very common, selecting a node as a repre-
sentative in one cluster.

The best reconstruction of EEDC [10] appears when only
temporal correlation is used, it is that all the nodes transmit
without using any representative. The results, reported in
Fig.7 as EEDC-max, are very close to the PKF-ideal. How-
ever, after using spatial correlation that each node is uni-
formly selected as the representative node, EEDC produces
significant errors (see line EEDC in Fig. 6). Compared with
PKF-ST, it produces 75.8 % more error for node 1 when the
transmission rate is 11.6 %. The situation is even worse for
the remaining nodes. The covariances of EEDC are so large
that they lie outside the range of the axis in Fig. 7.

Further on, the results obtained by PKF-idp, PKF-ST and
PKF-ideal are consistent with the results using the artificial
system. Taking node 2 in Fig. 7a for example, when PKF-
ST and PKF-idp uses the same transmission rate 11.6 %, the
variance of reconstruction errors of PKF-idp is reduced by
59.6 % by PKF-ST. In another word, under the same recon-
struction quality (variance 0.009), PKF-ST further reduces
the transmission rate of PKF-idp by 24 %.
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Figure 4: Performance comparison of PKF-idp, PKF-ST and PKF-ideal using an artificial system with three nodes.
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Figure 5: The superiority of PKF-ST by using time variant variance.
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Figure 6: Performance comparison of PKF-idp, PKF-ST,
PKF-ideal, and EEDC using real temperature values from
four nodes. Comparison for node 1.

4 Conclusion and Future Work
This work combines temporal and spatial correlation to

reduce communication energy cost for wireless sensor net-
works. The technique, called PKF-ST, is simpler and more
accurate than previous techniques. It reduces the transmis-
sion rate of each node using a reduced order model with a
guaranteed reconstruction quality and low complexity. The
leaf nodes operate independently and do not require a co-
ordinator. By using neighbors’ information, the accuracy is
further improved in the cluster head without any extra com-
munication. The precise analysis of the distribution of the
errors makes the reconstructions be close to the ideal one.

In contrast to previous approaches, PKF-ST is not re-
stricted to network size. For a small size network, it works
efficiently as illustrated in the experimental results. For the
networks with larger number of nodes, it can work by di-
viding them into small groups. Compared with EEDC for
example, the reconstruction error is several times smaller for
low-density networks.

The dynamic optimization of the threshold for each node
is currently being investigated.
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Figure 7: Performance comparison of PKF-idp, PKF-ST and PKF-ideal using real temperature values from four nodes. Com-
parison for nodes 2, 3, and 4.
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