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Abstract—Data compression using temporal and/or spatial
correlations has been extensively studied to prolong the lifetime
of wireless sensor networks (WSNs). In order to maximize the
gain of these techniques, this work proposes an off-line altruistic
compression-scheduling (ACS) scheme for cluster-based WSNs.
It schedules when and how (i.e. without compression, with
either of temporal and spatial compression, or with both of
them) each sensor node executes compression techniques. The
optimum scheduling solution to maximize the network lifetime
is obtained by solving a linear program, whose computational
complexity and runtime are efficiently reduced by a grouping
and filtering algorithm. In addition, we propose a transmission
power increment (TPI) method for WSNs with isolated nodes to
improve the spatial compression possibilities. It can be used in
ACS to further extend the lifetime of such networks.

The efficiency of ACS is demonstrated by extensive simulation
results using realistic models. It increases the network lifetime
by a factor of 1.67 to 12.49 depending on different temporal cor-
relations for typical WSNs. Compared with previous scheduling
methods, it further extends the network lifetime with even less
runtime. The combination of TPI and ACS significantly prolongs
the lifetime of networks with isolated nodes.

I. INTRODUCTION

Wireless sensor networks (WSNs), consisting of a larger
number of low cost and low power sensor nodes which
are usually supplied by battery power, have been applied to
more and more applications such as environment monitoring,
machine condition control, remote health care, logistic, etc.
In many applications it is hard to recharge or replace the
dying nodes due to the harsh physical environment, which
would lead to fragmentations of the whole network and loss
of potentially critical information. Thus, how to achieve the
energy efficiency and to extend the lifetime of WSNs have
received a lot of attention from the research community.

Because of the inherent existence of temporal and spatial
correlations in the physical phenomena, many researches focus
on the study of temporal and spatial compression approaches
to achieve energy efficiency in the past decades. For instance,
several techniques reduce the energy consumption of each
node by predicting the information based on its own historical
data [1]- [3]. In [4] and [5], sensor nodes are scheduled to com-
press their readings based on the correlated data from other
nodes to decrease the communication cost. Other proposals
like [6], [7] and [8] save the energy cost of communication
by forwarding an approximation of aggregates based on the

temporal or spatial correlations. These approaches mainly
reduce the energy cost at node-level. They still need network
level strategies to balance the cost of each node and hence
prolong the network lifetime.

In [9], a framework, achieving the trade-off between com-
munication and computation power consumption, is proposed
to maximize the network lifetime. It decides when should
the sensor nodes transmit data with temporal compression.
An enabling/disabling prediction scheme is presented in [10].
The cluster head estimates whether it is worthy for the sensor
nodes to further predict future data based on their historical
measurements, and adaptively switches their prediction states.
A number of other researches study the spatial correlations
to extend the network lifetime. The approaches in [12] and
[13] conserve energy by periodically selecting only a subset
of sensors to send data while others can be switched off. An
approach called ASAP [11] increases the network lifetime by
predicting the information through the use of probabilistic
models based on temporal and spatial correlations. Another
collaborative broadcasting and compression (CBC) approach
is proposed in [14] to improve the network lifetime by
controlling the nodes to cooperate in transmitting, receiving
and compressing data.

These works mainly focus on specific applications. Al-
though CBC [14] is able to generally schedule spatial com-
pression techniques, it only provides suboptimal solutions
and the models assumed in the work are too simple to
reflect the realistic scenarios. In this paper, we propose an
altruistic compression-scheduling (ACS) scheme using more
realistic models. It is a general and optimal scheduling scheme,
which works on the top of temporal and spatial compression
techniques to schedule when and how to execute them, and
can easily cooperate with other energy efficient protocols.
Additionally, in order to address the problem that the spatial
compression approaches cannot work in the networks with
isolated nodes, we propose a transmission power increment
(TPI) method to increase the spatial compression possibility.
Combining with ACS, the network lifetime can be further
extended.

The remainder of this paper is organized as follows. In Sec-
tion II, the energy models for compression and communication
are analyzed. In the following section, the ACS scheme and
the corresponding grouping and filtering (GF) algorithm are
presented. The TPI method is proposed in the next section.978-1-4673-7331-9/15/$31.00 c© 2015 IEEE



We demonstrate the efficiency of ACS and TPI by extensive
simulation results in Section V and summarize our work and
present the future research direction in the final section.

II. ENERGY COST MODEL

In a cluster-based WSN, we consider the data gathering
period is constant and the cluster head is less energy con-
strained. The network lifetime is dominated by the sensor
node who firstly runs out of energy [23]. Since one of the
most energy intensive processes is data communication [3], we
restrict ourselves to modeling the energy cost of communica-
tion related activities. The actual reduction in communication
energy achieved by a given compression technique depends on
the compression ratio. In order to provide a solid mathematical
foundation, this section we use entropy coding to model the
temporal and spatial compression ratios. Then we formulate
the energy cost of sensor nodes including compression and
communication.

A. Modeling Temporal and Spatial Compression Ratios

Entropy coding plays an important role in data compression
algorithms and has been applied in WSNs recently [15] [16]
[17]. It consists of two phases: modeling and coding. During
the modeling phase, a statistical model is established to assign
probabilities to the symbols, and in the coding phase a bit
sequence from these probabilities is produced with shorter
coding being given to the symbol with higher probability. By
using temporal and spatial correlations, the coding length can
be further reduced, which is proportional to the temporal and
spatial compression ratios, rt and rs.

For the sake of simplicity, we assume the Gaussian ran-
dom fields for the modeling phase, which are simple and
reasonable models for many natural phenomena [19]. Let
Xt = (xt1 , · · · , xtm) be the vector formed by the ran-
dom variables collected at m time steps of an individual
node and Xs = (xs1 , · · · , xsm) be the vector of random
variables measured at m different nodes at the same time.
The random variables are assumed to be continuous and
uniformly quantized with the same quantization step. Both Xt

and Xs are Gaussian processes and satisfy m−dimensional
multivariate Gaussian distribution. For conciseness, we let
X = (x1, · · · , xm) represent either Xt or Xs, and it has
density

fX(x1, · · · , xm) =
exp

(
− 1

2 (X − µ)TΣ−1(X − µ)
)

√
(2π)m|Σ|

where µ is a m-dimensional mean vector and Σ is a m×m
covariance matrix. The elements in the covariance matrix hold
Σi,i = σ2 and Σi,j = σ2ρij , where ρij = corr(xi, xj) is the
correlation function between xi and xj . In the time domain,
ρij is a function of the sampling distance, τij = |τi − τj |, of
the measurements collected at two different time points, i.e,
ρij = ρt(τij). Whereas, in the space domain, it is a function of
the distance dij of the observations collected at two different
space points, namely ρij = ρs(dij). There are several available

spatial correlation models as summarized in [18]. The common
observation is that as the distance increases, the correlation
decreases.

The distribution of xm conditional on the previous (m− 1)
variables, denoted as Xm−1 = (xm−1, · · · , x1), is a normal
distribution, (xm|Xm−1 = a) ∼ N(µ̄, σ̄2), where µ̄ =
µm + Σ12Σ−1

22 (a− µm−1) and σ̄2 = σ2 − Σ12Σ−1
22 Σ21

by partitioning µ and Σ as follows

µ =

[
µm
µm−1

]
with sizes

[
1× 1

(m− 1)× 1

]
Σ =

[
σ2 Σ12

Σ21 Σ22

]
with sizes [

1× 1 1× (m− 1)
(m− 1)× 1 (m− 1)× (m− 1)

]
.

Then the entropy rates1, Rm = H(xm|Xm−1), as m in-
creases are:

R1 = H(x1) =
1

2
ln
(
2πeσ2

)
R2 = H(x2|x1) =

1

2
ln
(
2πeσ2α1

)
R3 = H(x3|x2, x1) =

1

2
ln

(
2πeσ2

(
1− α2

α1

))

R4 = H(x4|x3, x2, x1) =
1

2
ln

(
2πeσ2

(
1− α3

α1− α2

))
...

where

α1 =1− ρ212
α2 =ρ213 + ρ223 − 2ρ12ρ13ρ23

α3 =ρ214 + ρ224 + ρ234 − ρ212ρ234 − ρ213ρ224 − ρ214ρ223
− 2ρ12ρ14ρ24 − 2ρ13ρ14ρ34 − 2ρ23ρ24ρ34

+ 2ρ12ρ13ρ24ρ34 + 2ρ12ρ14ρ23ρ34 + 2ρ13ρ14ρ23ρ24

Assuming that the initial transmission data size is R = R1

bits, the corresponding compression ratio r(xm|Xm−1) is a
functions of ρij :

r(x1) =
R1

R
= 1

r(x2|x1) =
R2

R
= 1 +

ln (α1)

R

r(x3|x2, x1) =
R3

R
= 1 +

ln
(

1− α2
α1

)
R

r(x4|x3, x2, x1) =
R4

R
= 1 +

ln
(

1− α3
α1−α2

)
R

...

1We use differential entropy instead of entropy here, since for an uniformly
quantized continuous random variable, they only differ by a constant [19].



Then the temporal compression ratio, denoted as rt, is a
function of ρt(τij), namely

rt = r(xm|Xm−1) (1)

Whereas the spatial compression ratio rs = r(xm|Xm−1)
is a function of ρij = ρs(dij). It becomes more complicated
as the number of the node’s neighbors increases, since the
distribution of the nodes are typically asymmetrical.

For simplicity, when we calculate the spatial compression
ratio for a node with multi-neighbors, we approximate it by
assuming that the data of its neighbors are uncorrelated2.
For example, in the formula of r(x3|x2, x1), the correlation
between x1 and x2 is assumed to be 0, i.e, ρ12 = 0. Then the
compression ratio that node x3 compresses based on both of
them is:

r(x3|x1, x2) = 1 +
ln(1− ρ213 − ρ223)

R
≈ 1− ρ213 + ρ223

R

It can be approximated by the product of r(x3|x1) and
r(x3|x2), since

2∏
j=1

r(x3|xj) =

(
1 +

ln
(
1− ρ213

)
R

)
·

(
1 +

ln
(
1− ρ223

)
R

)

≈

(
1− ρ213

R

)
·

(
1− ρ223

R

)

≈ 1− ρ213 + ρ223
R

+
ρ213 · ρ223
R2

≈ r(x3|x1, x2)

In this case, the spatial compression ratio that a node
compresses based on (m− 1) neighbors can be approximated
as the product of the ratio that the node compresses based on
each neighbor, namely,

rs =

m−1∏
j=1

r(xm|xj) (2)

This expression is consistent with the one in [14]. It is used
only for the sake of conciseness but not a limitation of our
scheduling scheme.

As we mentioned before, there are several available spatial
correlation models. We select one of them in [16], which is
verified using real phenomena datasets, to obtain the compres-
sion ratio based on one neighbor as given by:

r(xm|xj) = 1− c

dmj + c
(3)

where c is a constant that characterizes the extent of spatial
correlation in data and dmj is the distance between node m
and node j.

2This assumption for the approximated spatial compression ratio is only
for the sake of conciseness. It does not affect the process of the proposed
scheduling algorithm, since it is only one of the required input parameters.

B. Energy Cost Models

The individual communication and compression energy cost
models for a node are presented firstly. Combining them
with the temporal and spatial compression ratios, the total
energy cost of the node during one data gathering period is
formulated.

In [20], a detailed communication cost model is proposed.
Besides the energy consumption of the data packets trans-
mission, the energy consumed by overhead activities are also
considered, such as radio startup, channel accessing, control
packets, turnaround, idle listening, overhearing, collision and
retransmission. The simplified model is given by:

Ecmn = Eo + Erx/tx(di) ·R

where Eo is the energy spent on the overhead activities; Erx
is the receiving energy cost for receiving 1 bit data; Etx(di)
is the transmission energy cost by transmitting a single bit. It
is a function of the transmission distance, di. R is the size of
the transmission data.

According to [21], the unit energy consumption for receiv-
ing and transmitting are

Erx = Eelc

Etx(di) = (Eelc + Eapl · dαi )
(4)

where Eelc is the energy dissipated by the electronic circuits
of the transceiver to transmit or receive 1 bit data; Eapl is the
energy cost of the transmit amplifier for transmitting 1 bit data
at 1 m distance; and α is the path loss exponent which is 2 in
typical applications [22].

The computation cost for data compression is proportional
to the data size. We define the energy cost for processing 1
single bit of data is Ep.

Without using any compression, the energy of a node is
spent in transmitting R bits data to the cluster head with
overhead Eo, i.e,

Eno = Eo + Etx(di) ·R (5)

When the node uses its history data (previous nt time steps)
to execute temporal compression, the total energy cost of it
consists of processing (nt + 1) · R bits data and transmitting
R·rt bits of compressed data to the cluster head with overhead
Eo as given by:

Et = Ep · (nt + 1) ·R+ Eo + Etx ·R · rt (6)

Similarly, the total energy cost of the node employing spatial
correlation with the data of ns neighbors includes receiving
ns · R bits data, processing these data and its own data, then
transmitting R · rs bits of compressed data to the cluster head
with the incorporated overhead in receiving and transmitting
processes:

Es = Eo +Erx · ns ·R+Ep · (ns + 1) ·R+Etx ·R · rs (7)

When the node simultaneously compresses based on tem-
poral and spatial compressions, it is obviously that each
node executes temporal compression firstly can reduce more



communication cost in receiving. The total energy cost con-
sists of three parts: a) the temporal compression cost when
the node compresses its current data based on the data of
previous nt time steps; b) the spatial compression cost when it
receives information from its ns neighbors and executes spatial
compression; c) transmission energy cost when it transmits
the compressed data to the cluster head. It is formulated as
follows by incorporating the overhead during receiving and
transmission processes into Eo.

Ets =Ep · (nt + 1) ·R
+ Erx · ns ·R · rt + Ep · (ns + 1) ·R · rt
+ Eo + Etx ·R · rt · rs

(8)

III. ALTRUISTIC COMPRESSION-SCHEDULING SCHEME

In this section, we first present our altruistic compression-
scheduling (ACS) scheme and formulate the maximization of
the network lifetime as a linear program (LP). In order to
reduce the complexity of LP and obtain the optimum solution,
a grouping and filtering (GF) method is proposed.

A. ACS Scheme and LP Problem

Before communicating with the cluster head, each node
has different options to deal with the data packet: without
any compression, compressing it using its historical data,
selecting the possible number of its neighbors to execute
spatial compression, or compressing it with both temporal and
spatial correlations. Each option corresponds to a state with
different energy consumption. The states of node i are denoted
by the vector E(i).

The optimal nt used for temporal compression can be
calculated off-line. There is only one state for a node executing
temporal compression. Whereas, the number of states using
spatial compression depends on the number of its neighbors.
When the distance between node i and its neighbor node j,
dij , is not larger than the transmission distance of node j, dj ,
i.e, dij ≤ dj , node i is able to compress based on node j.

A

B

C

CH

E(A)

E(B)

E(C)

Eno_A

Et_A

Es_A|B Es_A|C Es_A|BC

Ets_A|B Ets_A|C Ets_A|BC

Eno_B

Et_B

Es_B|A Es_B|C Es_B|AC

Ets_B|A Ets_B|C Ets_B|AC

Eno_C

Et_C

Es_C|B Es_C|A Es_C|BA

Ets_C|B Ets_C|A Ets_C|BA

dAB

dA

dAC

dBC

dB

dC

Fig. 1. The states of each node in a cluster-based WSN

For illustration, let us consider a network with three nodes,
node A, B and C, and a cluster head CH , as depicted in Fig.
1. The three nodes can hear each other. Each node can choose
either or both of its neighbors to execute spatial compression.
There are

∑2
k=1

(
2
k

)
kinds of possibilities. Combining them

with the states related with temporal and no compression, the
total number of states of each node is 2 ·

∑2
k=1

(
2
k

)
+ 2 = 8

as shown in Fig. 1: without compression Eno i, with temporal
compression Et i, with spatial compression based on either

or both of its neighbors (e.g., Es A|B , Es A|C , Es A|BC for
node A), and with both temporal and spatial compression (e.g,
Ets A|B , Ets A|C and Ets A|BC for node A).

In a general cluster, if node i can hear ns nodes, there are
total 2 ·

∑ns

k=1

(
ns

k

)
+2 of states in E(i). Since decompression

is typically very energy intensive, we require that the node is
able to execute spatial compression only using uncompressed
data, i.e, its neighbor is not using spatial compression. For the
network in our example, at least one of the nodes is required
to transmit without spatial compression during several data
gathering periods. If only node B transmits without spatial
compression, node A has to reduce its states to E(A) =
(Eno A, Et A, Es A|B , Ets A|B) and select a state with the
minimum energy cost, min

{
E(A)

}
as its current state and

so does node C. The current states of A, B and C combining
the periods in these states constitute a ACS strategy. In the
next several periods, node A and/or node C will be selected
as the one without doing spatial compression. Since all the
nodes cannot do spatial compression at the same time, there
are total 23−1 = 7 possible strategies for this specific network
under our condition. Each of them works for several periods.
The sequence of these strategies combining with the number
of their effective periods constitute an ACS scheme.

More formally, for a cluster with n sensor nodes, the total
possible number of strategies, K, equals 2n − 1. Assuming
the number of the execution periods of each strategy is tk, the
corresponding ACS scheme can be represented by:

S =
{

(s1, t1), · · · , (sk, tk), · · · , (sK , tK)
}
,

where (sk, tk), 1 ≤ k ≤ K, indicates that strategy sk controls
the states of all sensor nodes for tk (tk is a non-negative
integer, tk ∈ Z∗) data gathering periods.

Assuming the initial energy of each node is Eint(i) and
the energy consumption of each node under each strategy in
one data gathering period is Ek(i), the total energy cost of
each node using ACS scheme has to be less than or equal
to its initial energy, i.e.,

∑K
k=1 tk · Ek(i) ≤ Eint(i). When

the first node exhausts its energy, it runs totally
∑K
k=1 tk

periods, which is the network lifetime as defined in Section
II. Thus, maximizing the whole network lifetime is equal to
maximize

∑K
k=1 tk under a bounded amount of initial energy.

This problem can be expressed in LP canonical form:

arg max
tk

K∑
k=1

tk

subject to : tk ≥ 0

and

K∑
k=1

tk · Ek(i) ≤ Eint(i) (i = 1, · · · , n)

This LP problem can be solved with a LP-solver (e.g., Matlab)
and we can obtain the optimum running periods of each
strategy, (t1, · · · , tK), which corresponds to the optimal ACS
scheme. However, as the number of sensor nodes raises,
the number of possible strategies increases exponentially. It
becomes increasingly expensive to find the optimal solution



for LP. In the following section, we reduce the complexity of
the above LP problem.

B. GF Method for Complexity Reduction

There are redundancies among the strategies in an ACS
scheme. Not every node is able to benefit from data com-
pression. Moreover, the states of a certain number of nodes
have no impact on the network lifetime. Besides, some of the
strategies may produce less profits than others.

Our GF method firstly finds the nodes for whom data
compression is unworthy. From (5) and (6), it is worthy to
do temporal compression only when

rt < 1− Ep · (nt + 1)

Etx(di)
. (9)

Since the transmission cost is usually much lager than the
computation cost, assuming nt is small, this condition can be
easily satisfied.

From (5)-(8), a node profits from doing spatial compression
only when Es < Eno and/or Est < Et, namely,

rs < 1− Erx · ns
Etx(di)

− Ep · (ns + 1)

Etx(di)
. (10)

In the following we aim to find which nodes have the
opportunity to satisfy this condition. The minimum energy cost
of node i compressing based on ns neighbors happens when
the compressed data is sufficiently small (rs is too small) and
the transmission energy cost can be neglected in (7) and (8).
If the minimum energy cost is larger than or equal to without
spatial compression, i.e. (8) ≥ (6) and/or (7) ≥ (5), we obtain
that:

Erx · ns + Ep · (ns + 1) ≥ Etx(di) (11)

Node i can definitely not benefit from the compression. Since
the transmission energy cost is a function of the distance
di, there exists a maximum transmission distance dmax|ns

.
If di ≤ dmax|ns

, compressing based on ns or more nodes can
definitely not save energy.

For a WSN cluster, there may be M possible dmax|ns
,

1 ≤ ns ≤ M , where M is determined by the node
with the farthest distance to the cluster head. According
to their positions, the sensor nodes can be divided into
M groups, G0, · · · , Gns , · · · , GM−1, as illustrated in Fig.
2. If di ∈

(
0, dmax|1

]
, node i is assigned to the group

G0, which is unworthy to execute spatial compression; If
di ∈

(
dmax|ns

, dmax|ns+1

]
, node i is assigned to the group

Gns
. It can not save energy by spatial compression based on

(ns + 1) or more nodes.
Given a node i ∈ Gns

who can hear N neighbors, it is
worthy to compress based on at most min{ns, N} nodes. The
states using more than this number to do spatial compression
can be removed and there remains

∑min{ns,N}
k=0

(
N
k

)
kinds of

states for the node.
Next, we focus on acquiring the nodes whose states are

irrelevant to the network lifetime. We can assign them to G0 as
well. Let Emax = {Emax(1), · · · , Emax(i), · · · , Emax(n)}
and Emin = {Emin(1), · · · , Emin(i), · · · , Emin(n)} denote

ns d

12  M M-1 ... dmax|1 dmax|2 dmax|M
...

...G0 G1 GM-1

E

Erx·ns + Ep ·(ns+1)
 Etx(di)

Sensor nodes
Cluster head

Fig. 2. Dividing the sensor nodes into M groups

the vectors of the maximum and minimum energy cost states
of each node respectively. If Emax(i) < max{Emin}, node i
is an irrelevant node, since it can stay in its worst state without
affecting the network lifetime. It is assigned to the group G0

(no spatial compression) to benefit other nodes.
Let us denote by n0 the number of nodes that are assigned

to group G0. There are K ′ = 2(n−n0) possible strategies
remaining.

We further reduce the complexity by filtering the suboptimal
ACS strategies. Let Ei = {Ei(1), Ei(2), · · · , Ei(n)} and
Ej = {Ej(1), Ej(2), · · · , Ej(n)} denote the vectors of the
energy cost of each node using strategy si and sj respectively,
where i, j ∈ K ′ and i 6= j. The difference between these two
vectors is denoted as εij = Ei − Ej . If all components of
εij are nonnegative, the strategy si is suboptimal. It can be
eliminated without degrading the network lifetime.

After finding the optimal strategies by grouping and filter-
ing, the complexity is reduced and the optimal ACS scheme
can be obtained by solving the aforementioned LP problem.
The pseudo-code of the algorithm is given in Algorithm 1.

IV. TRANSMISSION POWER INCREMENT METHOD

In a WSN, there may exist isolated nodes who cannot
hear any other node. If one of them is the farthest from the
cluster head in the network, this node dominates the whole
network lifetime. The spatial compression techniques that aim
to improve the lifetime can no longer make contributions. In
this situation, an additional method which can increase the
spatial compression possibility is urgent.

We propose a transmission power increment (TPI) method
to address the above problem. Once TPI enables the spatial



Algorithm 1 ACS scheme
1: Input: A cluster-based WSN with the specific temporal

and spatial compression ratios
2: Output: ACS scheduling scheme {(s1, t1), · · · , (sK , tK)}
3: Calculate dmax|ns

, ns ∈ [1,M ]
4: for i = 1 : n do
5: if di ∈ (dmax|ns

, dmax|ns+1] then
6: Gns

← node i
7: end if
8: find neighbors
9: Calculate E(i) using (5)-(8).

10: end for
11: Calculate Emax and Emin

12: for i = 1 : n do
13: if Emax(i) < max{Emin} then
14: G0 ← i
15: end if
16: end for
17: for each i, j ∈ K ′, i 6= j do
18: Calculate Ei and Ej when using si and sj
19: Let εij = Ei −Ej

20: if all(εij) >= 0 then
21: Filter out strategy si
22: end if
23: end for
24: Solve the LP problem

compression techniques, ACS can further prolong the network
lifetime. It is based on the observation that wireless sensor
node can prolong its communication distance by enhancing its
transmission power [20] [21]. We give this isolated node an
opportunity to execute spatial compression by increasing the
transmission power of its neighbors. This operation extends
the network lifetime when it satisfies the conditions: a) the
isolated node can conserve energy from spatial compression
and b) after enhancing the transmission power, the neighbors
do not degrade the network lifetime.

In the following we aim to find an optimal candidate who
can maximize the gain among its neighbors. The analysis com-
mences by considering all nodes using temporal compressions.
It is easy to obtain the same results when considering all nodes
without it.

For illustration purpose, let us consider a simple scenario
(see Fig. 3): a WSN consists of 2 sensors and 1 head. Node
B is an isolated node and it cannot hear node A. The initial
transmission data of them are R bits.

A

B

CH

dB

dA

Fig. 3. A simple WSN with isolated node

By increasing the transmission power of node A, the trans-
mission distance of it is increased from dA to dAB . Node B
is able to execute spatial compression. By using (6) and (8),
it is easy to obtain Et B and Ets B|A. To satisfy condition
a), it requires Ets B|A < Et B . According to (3) and (4), the
distance between them should satisfy

dAB <
(Eapl · dαB − 2 · Ep) · c

Eelc + 2 · Ep
After node A enhancing its transmission power, the energy

cost of it with the temporal compression becomes

Et ehc A = Ep · (nt + 1) ·R+ Eo + Etx(dAB) ·R · rt.

Under the condition Et ehc A < Et B , it requires dAB < dB .
Thus, the network lifetime can be prolonged only when

dAB < min

{
(Eapl · dαB − 2 · Ep) · c

Eelc + 2 · Ep
, dB

}
(12)

For a general WSN, let I be the dominated isolated node
and N∗

i be the set of its neighbors. Each of them meets (12).
If there are more than one node in N∗

i , the node j∗ who can
maximize the gain will be chosen to enhance the transmission
power. It satisfies:

j∗ = arg min
j∈N∗

i

{
max

(
Ets I|j , Et ehc j

)}
(13)

where Ets I|j is the energy cost of I when it compresses
based on node j and Et ehc j is the energy cost of node j
with temporal compression when it enhances the transmission
power.

After using our TPI method, the network lifetime can
be increased by spatial compression techniques. With the
parameters returned by these techniques, ACS can further
increase the gain.

V. SIMULATION RESULTS

In this section, we estimate the efficiency of ACS scheme
in extending the network lifetime. The profits by using ASC
scheme are presented with respect to the initial network
lifetime. The superiority of ACS is demonstrated by comparing
it with another general scheduling scheme, CBC [14]. To illus-
trate the performance of our TPI method, we further present
the increase of network lifetime by using the combination of
TPI and ACS.

In the experiments, we randomly generate the WSNs in the
area of 100 m × 100 m with a cluster head in the center.
The typical energy related parameters are taken from [14]:
Eelc = 50 nJ/bit, Eapl = 100 pJ/bit/m2, Ep = 5 nJ/bit,
the path loss α = 2. Each node has 5 J initial energy and
sends R = 400 bits of data to the cluster head during each
data gathering round. According to the real measurements in
[16], c = 25 m. The overhead energy cost, Eo, is assigned
to 5% of the transmission energy cost. The impact of Eo on
the increase of the lifetime is analyzed in more detail in the
later simulation. Each simulation is repeated 100 times with
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Fig. 4. The increase of network lifetime by exploiting the ACS scheme with
respect to the initial lifetime

random networks and the results corresponds to the average
values.

In Fig. 4, we report the increase of network lifetime when
the temporal compression ratio rt varies from 0.1 to 1.0
and the number of sensor nodes, n, equals 4, 8 and 16.
Obviously, ACS dramatically extends the network lifetime.
As rt approaches 0, the gain increases. For example, when
n equals 16, ACS increases the network lifetime by a factor
of 1.67 to 12.49 (from 67 % to 1149 %) depending on
different temporal correlations. Even when rt is 1.0, which
means sensor nodes do not employ the temporal compression,
the network lifetime can still be extended by the spatial
compression. Specifically, the percentage increase of network
lifetime is 20%, 35% and 67% for n equals 4, 8 and 16,
respectively. Note that the gain of the increase becomes larger
when the number of sensor nodes raises. Since the density
of the network increases, the spatial correlation gets higher.
Besides, each node has opportunities to hear more neighbors
and compress based on them.

In order to evaluate the feasibility of ACS, we measure its
runtime and compare it with the CBC heuristic approach. Note
that in CBC, nodes do not execute temporal compression. At
the same time CBC only allows each node to compress based
on at most one neighbor and does not consider all of possible
strategies. The runtime of them are shown in Fig. 5. Both
of them slightly grows as the number of nodes increases. In
any case ACS consumes less than 0.2 s. Although our ACS
scheme considers the temporal compression and produces the
optimal scheduling solution, it is even more time efficient.
This is due to the reduction of the computational complexity
by our GF algorithm. Taking one experiment for instance,
when the number of sensor nodes is 15, there are 215 − 1
initial ACS strategies; after grouping nodes and finding the
irrelevant nodes, 7 nodes are assigned to group G0 and the
number of ACS strategies decreases to 28; by further filtering
the suboptimal strategies, only 16 strategies remains.

Next, we demonstrate the superiority of our ACS scheme

2 4 6 8 10 12 14 16

0.05

0.1

0.15

0.2

TheBnumberBofBsensorBnodesBinBoneBcluster

R
un

tim
eB

(s
ec

on
d)

ACSBscheme
CBCBheuristicB[14]

Fig. 5. The comparison of runtime between ACS scheme and CBC heuristic
method [14]

versus CBC heuristic approach and validate the accuracy of
our more realistic models. We first compare their increase of
network lifetime using CBC simple models. In the models,
the overhead energy cost is not considered. Additionally, they
neglect the impact of distance on the spatial correlation. In
order to provide a fair comparison, we disable the temporal
compression in our ACS scheme to be consistent with CBC.
The gain of ACS would be larger if the temporal compression
is used.

0.2 0.4 0.6 0.8
0

20

40

60

80

100

120

140

Spatial,compression,ratio,rs

T
he

,in
cr

ea
se

,o
f,n

et
w

or
k,

lif
et

im
e,

(A
)

n=5,CBC,[14]

n=5,ACS,scheme

n=10,CBC,[14]

n=10,ACS,scheme

n=15,CBC,[14]

n=15,ACS,scheme
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As depicted in Fig. 6, ACS is always more efficient than
CBC heuristic method, since it provides the optimal scheduling
scheme. As the number of the sensor nodes increases, this
superiority becomes more significant. Besides, the advantage
of ACS increases when the spatial compression ratio, rs, is
lager. It is relevant to the proportion of the transmission energy
cost. When rs is small, the transmitting energy cost is only a
small proportion of the total energy. Its variation by using the



scheduling scheme is unable to significantly alert the network
lifetime. Whereas, this variation becomes more obvious when
rs is higher. As a result, the difference of the gains using ACS
and CBC gets larger.
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network lifetime and the superiority of ACS scheme

As the models used in [14] are too simple to reflect the
realistic scenario, we analyze the impact of more realistic
models on the increase of network lifetime and the superiority
of ACS. We first obtain the scheduling solution of CBC
using its simple models. By plugging this solution to the real
scenario, with more realistic communication and compression
models proposed in Section II, the actual increase of lifetime
is obtained. We then compare the increase in network lifetime
of CBC and ACS using our realistic models. The results are
illustrated in Fig.7. The trend of the gain of both ACS and
CBC methods are consistent with the aforementioned analyses.
Using the same realistic models, ACS is still more efficient
than CBC, especially when the number of nodes is larger. In
addition, the gains of CBC using two models are different.
With our more realistic models, the network lifetime can be
extended more.

We further estimate the impact of overhead energy con-
sumption, Eo, on the gain of network lifetime. Fig. 8 shows
, in the realistic scenarios there exists a threshold of Eo.
Before the threshold, the gain decreases when Eo accounts
for larger proportion in the transmission energy. However,
our ACS scheme outperforms CBC significantly. After the
threshold, due to the fact that Eo cannot be reduced by neither
temporal nor spatial compression, both ACS and CBC with
the realistic models realize that it is no longer worthy to do
any compression. The network lifetime cannot be extended
any more. Whereas CBC heuristic method using the simple
models does not consider this impact of Eo. It produces a
scheduling scheme which actually degrades the performance
when the proportion exceeds 35%.

In order to evaluate the performance of TPI, we randomly
generate WSNs with one cluster head and 10 sensor nodes
for 100 times. There are 19 networks have isolated nodes
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and cannot benefit from spatial compression. One of them is
shown in Fig. 9. Node A is the farthest and isolated node, it is
unable to compress based on others. Without TPI, the network
lifetime cannot be increased by using spatial compression. As
depicted in Fig. 10, the gains of ACS using both temporal
and spatial compressions are the same as only using temporal
compression. This is consistent with the analyses in Section
IV. Whereas, with the TPI method, node j∗ which satisfies
(13) is chosen to enhance the transmission power and node A
can benefit from compressing based on node j∗. Combining
with ACS, the network lifetime is further extended by more
than 200% when rt = 0.1.

VI. CONCLUSION AND FUTURE WORK

In order to maximize the network lifetime, we propose an
altruistic compression-scheduling (ACS) scheme for the data
compression techniques using temporal and/or spatial correla-
tions. Given the related parameters of the network and the
compression techniques including compression ratios, com-
putation and communication energy cost, ACS can produce
an optimum scheduling scheme off-line. The scheme specifies
when and how each node executes compression techniques,
i.e, without compression, with either of temporal and spatial
compression or with both of them. The maximization of
the network lifetime is modeled as a linear programming
(LP) problem. When the number of sensor nodes increases,
it is infeasible to solve this problem, since its complexity
exponentially increases. To address this, we provide a grouping
and filtering (GF) method. Besides, for the spatial compression
techniques that cannot work in the networks with isolated
nodes, we propose a transmission power increment (TPI)
method to increase the spatial compression possibility. It can
be combined with ACS to further extend the lifetime of such
networks.

The GF method makes ACS feasible for typical WSNs
applications. It consumes less than 0.2 s execution time.
Extensive simulation results demonstrate the efficiency of our
ACS scheme in extending the network lifetime. For instance,
it prolongs the lifetime of typical WSNs by a factor of
1.67 to 12.49 as the compression ratio varies, when there
are 16 sensor nodes in the cluster. Compared with previous
approaches, it extends more network lifetime with even less
runtime. Additionally, TPI successfully improves the spatial
compression possibility. The combination of TPI and ACS
further prolongs the network by more than 200% in a typical
scenario.

In the future, we plan to study concrete temporal and spatial
compression models using real measured datasets, and to
develop an on-line altruistic approach to make it more flexible
for dynamic WSNs.
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