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Abstract—The Internet of Things (IoT) has been recognized
as the next technological revolution. It faces two challenges:
how to achieve energy efficient communication for the battery
constrained devices and how to connect a very large number
of devices to the Internet with low latency, high efficiency and
reliability. To address these problems, this work proposes two
methods based on Kalman filter, termed as EPKF (extensions of
predicable Kalman filter). They locally reduce the unnecessary
transmission (access) of end devices to the network (Internet) uti-
lizing the spatial and temporal correlations with low algorithmic
overhead. Each transmitting device (TD) independently controls
its transmission using the temporal correlation; and the receiving
device (RD) exploits the spatial correlation among the TDs to
further improve the reconstruction quality. The reconstruction
problem in the RD is nonlinear. To reduce the computation
complexity, an in-depth analysis of the local estimate error is
conducted and the approximated linear solutions are thereupon
obtained. They are fundamental methods applicable to any
IoT monitored/controlled physical system that can be modeled
as a linear state space representation. The pedestrian-position
application is used as a case study to demonstrate the efficiency
in the simulation. Remarkably, the EPKF methods using the
linear combinations of the local estimates from multiple TDs
reduce the transmission rate to 10%, while achieving the same
reconstruction quality as using KF in the traditional manner.

Index Terms—Internet of Things (IoT), wireless communica-
tion, sensor networks, Kalman filter, state space model, data
prediction, state estimate, spatial and/or temporal correlation,
multivariate normal distribution.

I. INTRODUCTION

THE emerging Internet of Things (IoT) has been recog-
nized as the next technological revolution, which can

play a remarkable role in improving the quality of our daily
lives [1]. It refers to uniquely identifiable physical objects and
their virtual representations in an Internet-like structure based
on sensing, communication, networking and information pro-
cessing technologies. These objects are typically attached with
wireless IoT devices, which enables them to ‘see’, ‘hear’ and
cooperatively execute tasks [2]. Various applications have al-
ready benefited from the IoT, such as industrial automation [3],
intelligent agriculture [4], environment monitoring [5], mobile
health-care [6], etc.
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As the end device is usually powered by a limited battery,
energy efficiency is very critical for these applications. For
some devices, such as sensor nodes, wireless communication
is especially expensive [7]. Besides the energy cost for data
packet transmission, additional energy is required by the
overhead activities, such as channel listening, communication
synchronization, retransmission, etc. Thus, how to achieve
energy efficient communication is very important. Moreover,
another challenge in IoT is how to connect a very large
number of devices to the Internet while satisfying the re-
quirements of latency, energy efficiency and reliability as
mentioned in [3]. This is especially critical for the industrial
IoT, where WirelessHART and ISA 100.11a standards are
designed for the real-world applications in process automation
[8]. For addressing these two issues, a promising solution is
to appropriately control the transmission of each end device
by the local processing techniques.

Kalman filter (KF) has been widely used in many IoT
applications for data processing, since the dynamic perfor-
mance of the physical system monitored/controlled by IoT can
be represented mathematically by a state space (SS) model
utilizing the physical laws [9]. The available applications
include target localization and tracking [10], [11], privacy
protection in social network data publishing [12], [13], outliers
detection [14], [15], etc. It provides the optimal state estimate
from the noisy measurements in the sense of minimum mean
square error (MMSE) for a linear dynamical system. However,
the traditional way using KF requires the IoT devices to
uninterruptedly transmit data, which results in a high com-
munication cost, the competition of the limited bandwidth as
well as the transmission latency.

In order to address the above mentioned issues while
keeping the functionality of KF, a number of studies have
been conducted. For example, the transmitting device (TD)
in [16] is required to randomly send the raw data with a
Bernoulli distribution and the receiving device (RD) uses a
modified KF to estimate the system state. In [17], an improved
transmission schedule is proposed, where each TD transmits
the raw data following a stochastic decision based on a
uniformly distributed random variable. The schedule keeps the
Gaussian property and the RD calculates the reconstruction
using a variation of KF. As the TD is not required to do
any preprocessing in these approaches, the estimate error
cumulates due to information loss. To compensate for the
inaccurate estimate caused by the missed data, a local KF is
suggested to be executed in the TD. Once the local estimate
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is received, the lost information can still be inferred. For
instance, DKF (dual KFs) is presented in [18], where a pair
of KFs are synchronously executed in the TD and RD to
predict the output estimate, respectively. The TD uses an
additional KF to remove the measurement noise and produce
the system output. When the prediction error is larger than
a given threshold, the output estimate is transmitted to the
RD. This method is further improved by PKF (predictable
KF) [19], in which the dual KFs are replaced by a pair
of k−step ahead predictors with much lower complexity as
introduced in Section II. It provides the optimal reconstruction
solution with minimum mean square error (MMSE) when
using the transmitted information of a single TD [20] and the
explicit function of the trade-off between transmission rate and
reconstruction quality is derived in [21].

However, the above mentioned techniques have not consid-
ered the spatial correlation among the neighboring TDs, which
can be utilized to further reduce the number of transmissions
of each device (or equivalently the number of active devices
at each time step). One common way to exploit the spatial
correlation is through the information exchange. For example,
in [22], each TD exchanges measurements with its neighbors
and estimates the system state using a KF, based on its
own and the received data. Although the estimate quality is
increased, extra energy is consumed for communication, which
is not preferred considering the high wireless communication
cost. To avoid intra-communication, a coordinator is usually
required. As proposed by [23], each TD executes a local KF
and the remote estimator schedules the transmissions of the
local estimates. A similar work is [24], where a centralized
scheduling is proposed to determine the transmission of each
TD to minimize the average estimation error considering
multiple linear time-invariant stochastic processes with the
constraints of packet length and bandwidth. These approaches
increase the computation complexity of the RD. An interesting
method is presented in [25]. It utilizes the spatio-temporal
correlation without intra-communication and any coordinator.
Each TD estimates the system state locally and schedules
its transmission independently; the RD improves the estimate
quality by using the transmitted data from multiple TDs.
However, it requires the RD to calculate a time variant
measurement covariance matrix and the reduced order system
model online, which is computation intensive.

This work proposes two methods based on KF, termed as
EPKF (extensions of predictable KF), to reduce the recon-
struction complexity of the RD required by [25]. Each TD
executes a PKF [19] to estimate the system state locally and
control its own transmission. The RD further exploits the
spatial correlation to improve the reconstruction quality. It
is proved to be sufficient that the RD only calculates the
linear combinations of the local estimates of the TDs with
the stored coefficients. The main contributions of the paper
are summarized as follows:

a) This work analyzes the effect of applying the spatial
correlation on the improvement of estimation accuracy in
the general cases using the entropy theory. For a system
monitored by multiple devices, the amount of information
provided by all TDs represents the spatial correlation. The

higher it is, the less estimate error can be achieved.
b) Based on the analysis, two EPKF methods are proposed

to reduce the unnecessary transmission (access) of end
devices to network (Internet) utilizing the spatial and
temporal correlations with low algorithmic overhead.
Compared with the traditional way using KF, where
the uninterrupted transmission of a single IoT device is
required, the EPKF methods reduce the number of trans-
missions while achieving the same reconstruction quality;
different from the KF-based methods for transmission
rate reduction, EPKF methods avoid intra-communication
and enable each TD to independently schedule the trans-
mission without a coordinator.

c) Moreover, an in-depth analysis regarding the error distri-
bution is conducted, which extends the analysis in [21]
to a higher dimension and provides a strong theoretical
support for the proposed methods. The error is produced
at different Markov states and it satisfies a truncated
multivariate normal (MVN) distribution over parallelo-
grams determined region at each state. To the best of
our knowledge, this is the first work that provides the
calculation of the error covariance by using the Hessian
matrix of the probability density function (PDF) of MVN
and the matrix transformation.

d) Furthermore, the EPKF methods are the fundamental
approaches applicable to any IoT monitored/controlled
physical system that can be characterized by a linear
state space model. For demonstrating the efficiency, the
pedestrian-position application is used as a case study.
Remarkably, using the linear combinations of the local
estimates is sufficient for reducing the number of trans-
missions with the guaranteed estimate accuracy.

The rest of this paper is organized as follows. Section II
formulates the reconstruction problem when the RD utilizes
the preprocessed data of multiple TDs. Section III presents the
linear solutions after the deep analysis of the error distribution.
The efficiency of the proposed approaches is estimated using
an IoT application in Section IV. Finally, we conclude the
work in Section V.

II. PROBLEM DESCRIPTION

This section presents the system model and analyzes the
effect of using spatial correlation on the improvement of
estimate accuracy. After that, the local processing approach
of each TD is presented and the reconstruction problem in the
RD is formulated.

The state space (SS) representation is widely adopted to
characterize the dynamic performance of a physical system
monitored/controlled by IoT. Many linear SS models have
been derived by utilizing the physical laws of mechanical,
electrical, fluid and thermodynamic systems [9], for example,
the heat dynamics of a building [26], speed or position of
DC motor used in many industrial control systems [27], outlet
temperature of the plate heat exchanger in the industrial
engineering [28], and pipeline flow [29], etc. When such a
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system is monitored by m devices, the SS model satisfies:

xk = Akxk−1 +Bkuk−1 + wk−1 (1)

zik = Hi
kxk + vik (2)

where xk is the state vector, uk is the system control input
and zik is the measurement from device i (1 ≤ i ≤ m,
m is the number of monitoring devices); Ak is the state
transition matrix, Bk is the control input matrix and Hi

k is the
observation matrix; wk ∼ N (0, Qk) and vik ∼ N (0, Ri

k) char-
acterize process and measurement noise, respectively. They are
mutually independent, i.e., E[wkvj ] = 0, ∀k, j. The system is
assumed to be controllable and observable.

As the measurements of the TDs come from the same
system, there exists spatial correlation for estimating the
system state. The amount of information provided by all TDs
represents the spatial correlation. The higher it is, the less
estimate error can be achieved. For example, when only the
measurements from TD i, Zi

k = [zi1, z
i
2, · · · zik], is used for

state estimation, it is proved by [30] that the optimal estimate
x̂k based on Zi

k minimizes the estimate error entropy, which
is determined by the mutual information between xk and Zi

k.
Mathematically, we have:

H(êk|Zi
k) = H(xk)− I(xk, x̂k)

= H(xk)− I(xk,Z
i
k)

= H(xk|Zi
k). (3)

where êk = x̂k−xk; H(·) denotes the entropy of the random
variable and I(·, ·) is the mutual information between two
random variables. They are determined by the probability
density functions (PDFs) and the joint PDFs of the random
variables, respectively, which are associated with the system
parameters from time 1 to k. The second equality holds,
because the optimal estimate x̂k utilizes all of the information
provided by Zi

k resulting in I(xk, x̂k) = I(xk,Zi
k). The larger

I(xk,Zi
k) is, the smaller H(êk|Zi

k) can be achieved. The
uncertainty of the system state is reduced to the conditional
entropy H(xk|Zi

k) as depicted in Fig. 1a. Further exploiting
Zj
k, the error entropy is reduced to H(êk|Zi

k,Z
j
k). The value

depends on how much additional information is provided by
Zj
k to the system state when the information provided by Zi

k

is used. Let I(xk,Z
j
k|Zi

k) denote this additional information.
It can be calculated by:

I(xk,Z
j
k|Z

i
k) = I(xk,Z

j
k)− I(xk,Z

i
k,Z

j
k).

In the general case as shown in Fig. 1b, part of information
in I(xk,Z

j
k) can be known from Zi

k and this information
is no more useful to reduce the H(xk). Then the spatial
correlation is the total amount of information reflecting the
system state, I(xk,Zi

k)+I(xk,Z
j
k|Zi

k). Using this correlation,
H(êk|Zi

k,Z
j
k) becomes:

H(êk|Zi
k,Z

j
k) = H(xk)− I(xk,Z

i
k)− I(xk,Z

j
k|Z

i
k)

= H(êk|Zi
k)− I(xk,Z

j
k|Z

i
k). (4)

As I(xk,Z
j
k|Zi

k) ≥ 0, we have H(êk|Zi
k,Z

j
k) ≤ H(êk|Zi

k).
The equality holds if and only if I(xk,Z

j
k) = I(xk,Zi

k,Z
j
k),

i.e., all information provided by TD j can be known from

(a) (b)

Fig. 1. The estimate error entropy using and without using the spatial
correlation: (a) the estimate error entropy without using spatial correlation
is H(êk|Zi

k) = H(xk) − I(xk,Zi
k); (b) the spatial correlation equals

I(xk,Zi
k) + I(xk,Z

j
k|Z

i
k) in the general case and the estimate entropy

using the spatial correlation is H(êk|Zi
k,Z

j
k) = H(xk) − I(xk,Zi

k) −
I(xk,Z

j
k|Z

i
k), where I(xk,Z

j
k|Z

i
k) = I(xk,Z

j
k) − I(xk,Zi

k,Z
j
k) is the

additional information provided by TD j .

TD i. Except this degenerate case, the error entropy can be
definitely reduced by using spatial correlation.

Based on the above analyzed relationship between estimate
error entropy and spatial correlation, we are allowed to reduce
the transmission rate of TD j, while achieving the same
estimate error entropy as using only the information of TD
i. Considering the communication cost and limited network
resources as mentioned in Section I, each TD can reduce the
number of transmissions to the RD; after that, the RD further
utilizes the spatial correlation to improve the estimate quality.

In this work, each TD executes the PKF method [19],
which combines a predictor with a KF, to control its own
transmission. PKF provides the optimal reconstruction solution
when using the transmitted information of a single TD as
analyzed in [20]. Fig. 2 depicts the block diagrams of the
PKF encoder (PKF-en) running in the TD and the PKF
decoder (PKF-de) running in the RD. The TD runs a local
KF with Eqs. (5) to (9) to produce the state estimate x̂k while
removing the measurement noise. The RD predicts x̂k with
a simple predictor Pkf , Eq. (10), and produces the predicted
state, x̃k. To guarantee the prediction quality, the TD follows
the prediction of the RD and calculates the prediction error
εk = Hk(x̃k − x̂k). If ‖εk‖ exceeds a given threshold, τ ,
the TD sends its local estimate x̂k and the RD replaces the
prediction as formulated in Eq. (11). The reconstructed signal
in the RD is Eq. (12).

x̂−k = Akx̂k−1 +Bkuk−1 (5)

P−k = AkPk−1A
T
k +Qk (6)

Kk = P−k H
T
k (HkP

−
k H

T
k +Rk)

−1
(7)

x̂k = x̂−k +Kk(zk −Hkx̂
−
k ) (8)

Pk = (I −KkHk)P−k (9)
x̃k = Akx̄k−1 (10)

x̄k =

{
x̃k, if ||εk|| = ||Hk(x̃k − x̂k)|| ≤ τ
x̂k, otherwise

(11)

z̄k = Hkx̄k (12)

After intermittently receiving the local estimates of m (m ∈
Z+,m > 1) TDs, the RD further utilizes the spatial correlation
to improve the reconstruction quality. More specifically, let
X̂i
k = [x̂i1, · · · , x̂ik] denote the local estimates of TD i. Under
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Fig. 2. The block diagrams of PKF encoder (PKF-en) in the TD and PKF decoder (PKF-de) in the RD.

the control of PKF, the RD receives a subset of X̂i
k from each

TD, i.e., X̂i
j ⊂ X̂i

k (j ≤ k, 1 ≤ i ≤ m). Then, the best state
estimate that can be produced by the RD is:

¯̄xk = E[xk|X̂1
j , · · · , X̂

m
j ] (13)

and the estimate of system output for TD i at time k is:

¯̄zik = Hi
k

¯̄xk. (14)

We aim to solve this problem in the next sections.

III. EPKF METHODS: COMMUNICATION COST
REDUCTION SCHEMES BASED ON KF

In Eq. (13), X̂i
j consists of two components: the transmitted

local estimates and the accuracy indication of the prediction.
Each element in the former component is a Gaussian random
variable. While the element in the latter is a Boolean indicator:
it equals 0 if the RD receives data, indicating that the predic-
tion is inaccurate; otherwise, 1. It means that the reconstruction
problem is nonlinear and therefore hard to be solved by the
energy constrained devices. This section aims to approximate
the nonlinear information hidden in the Boolean indicator and
provides linear solutions for Eq. (13).

As known from [31], when TDs randomly transmit the local
estimates (with Bernoulli distribution), the MMSE reconstruc-
tion solution in the RD can be obtained by using a KF with an
augmented system model Eq. (15) and the observation model
Eq. (16). This method is termed as Rand-ST. The models are
obtained by combining Eq. (1) and Eq. (8).

Xk = FkXk−1 +Wk (15)

where

Fk =

 Ak · · · 0
...

. . .
...

Km
k H

m
k Ak · · · (I −Km

k H
m
k )Ak

;

Wk =
[
wk, · · · ,Km

k H
m
k w

m
k +Km

k v
m
k

]T
.

Zk = CkXk (16)

where Ck =
[
0 Ik

]
and Ik is the identity matrix whose size

varies to select the transmitted local estimates at time k. If all
TDs continuously transmit their local estimates, Ik becomes
time invariant I , which is a nm × nm identity matrix. Then
Ck = C =

[
0 I

]
.

As the untransmitted data of PKF, i.e., Boolean indicator is
1, indicates that the prediction x̃ik is close to x̂ik. The RD can

Fig. 3. The schematic diagram of the error definitions.

take x̃ik as the updated x̂ik with a deviation. If the deviation
satisfies a normal distribution, Eq. (13) can be solved linearly
using Rand-ST by adding the Gaussian noise Vk in Eq. (16)
and the new model becomes:

Zk = CXk + Vk. (17)

For this purpose, this section analyzes the deviation between
x̄ik and x̂ik. Based on the analysis, it further investigates the
possible reconstruction solutions. In the following description,
we let mo denote the original model, i.e., Eqs. (1) and (2), and
ma denote the augmented model, i.e., Eqs. (15) and (17).

A. Analysis of local reconstruction error

Let ēk = x̄k − x̂k denote the deviation between the local
estimate and the reconstruction. We analyze its distribution in
two steps: firstly, the distribution of k-step ahead prediction
error of the state, ek = x̃k − x̂k, is obtained; after that, we
further study the distribution of ēk based on the relationship
between ēk and ek. The diagram of the notations is shown in
Fig. 3. The following analysis extends the one in [21] to a
higher-dimension. We assume that the KF enters to the steady
state, i.e., Kk→∞ = K, P−k→∞ = P− and Pk→∞ = P ,
and the subscripts (time index) of the system parameters are
ignored for conciseness. As the analysis is identical for each
node, the superscript i is neglected as well.

1) Prediction error: Let êk = x̂k − xk denote the a
posteriori estimate error of KF. Combining Eqs. (1), (2), (5),
(8) and (10), we can recursively calculate the k-step ahead
prediction error as:

ek = Aek−1 +KHAêk−1 −KHwk −Kvk
= Aek−1 −Kδk (18)

where δk = −HAêk−1 + Hwk + vk = zk − Hx̂−k is the
innovation and satisfies the normal distribution with zero mean
and covariance (HP−HT + R), i.e., δk ∼ N (0, HP−HT +
R). This equation indicates that the k-step ahead prediction
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error of the state is the linear transform of the error from k−1
step with the transition matrix A plus the current innovation
weighted by the Kalman gain.

As e0 = 0, ek can be obtained in a compact form by
simplifying Eq. (18) as:

ek = −
k−1∑
i=0

AiKδk−i

= αk
~δk (19)

where αk = [−Ak−1K, · · · ,−AK,−K] and ~δk =
[δ1, · · · , δk−1, δk]T is the vector of k innovations. ek is linearly
transformed from k innovations by the matrix αk. As each
δk is an i.i.d. normal distributed random variable, their linear
combinations are still normally distributed, which indicates
that ~δk satisfies a MVN distribution [32]. The mean of ~δk is
a zero vector. The covariance matrix is denoted as Σ~δk , which
is a diagonal matrix with HP−HT +R on its main diagonal.
The mean of ek is 0 and its covariance can be calculated using
Eqs. (7) and (19) as:

θk = E[eke
T
k ] =

k−1∑
i=0

AiP−HTKT (AT )i.

Thus, when k = 1, e1 = −Kδ1, where the error in each
dimension is linearly dependent; when k > 1, ek satisfies a
joint normal distribution with zero mean and covariance θk,
i.e., ek ∼ N (0, θk). For illustration, we arbitrarily create a
system with n = 2 and m = 1 to depict the distribution of ek.
The system parameters are listed in Table I. In this case, ek
only has two dimensions, which makes it easy to observe the
distribution. Figs. 4a and 4b depict the density contour of ek
and ~δk when k = 2, respectively. Both of them satisfy joint
normal distributions, i.e., ~δk ∼ N (0,Σ~δk) and ek ∼ N (0, θk)
as analyzed above. The directions of the principal axes of the
ellipsoids are determined by the eigenvectors of the covariance
matrix. There is no correlation between the two dimensions of
~δ2. The linear transformation of ~δ2 by the matrix α2, α2

~δ2,
coincides with e2. This confirms our former analysis.

2) Reconstruction error: We further analyze the relation-
ship between the k-step ahead prediction error, ek, and the
reconstruction error, ēk, and then obtain the distribution of ēk.
The idea is to firstly model the process of PKF as a Markov
chain, then decompose ēk into the prediction error produced at
each Markov state. Through the analysis of the error at each
state, the distribution of ēk can be obtained. The complete
description regarding the modeling of PKF using the CDF
of εk as a Markov chain is presented in [20], [21], where
the transition probability from state k to k + 1, pk|k+1, the
steady state probability over state k, pk, and the transmission
probability of the node have been derived. Therefore, this work
only presents a concise formulation to find the relationship
between ek and ēk.

According to the definition of ek and Eq. (19), the k-step
ahead prediction error of the system output εk in Eq. (11) can
be calculated by:

εk = Hek = βk~δk (20)

where βk = Hαk. Depending on whether εk lies in the
interval [−τ τ ], there are two outcomes of the reconstructed
state x̄k: prediction x̃k or local KF estimate x̂k. The out-
come at time k is independent of the one in other time.
More specifically, assuming x̄k = x̂k, it does not affect the
likelihood of x̄k+1 = x̂k+1 or x̄k+1 = x̃k+1. The sequence
of reconstructions, x̄1, x̄2, x̄3, · · · , is a random process. The
outcome of each random variable x̄k corresponds to either a
success when it is x̃k, or a failure otherwise. Let Υn denote
the number of the most recent consecutive successes that have
been observed at the nth trial. If the nth trial is a failure, then
Υn = 0; if trial numbers n, n − 1, n − 2, · · · , n − m + 1
are all successes but trial number n − m is a failure, then
Υn = m. The collection of {Υ1, Υ2, Υ3, · · · } is thereby a
stochastic process. Assuming Υn = k at the nth trial, then
Υn+1 equals either k + 1 or 0 at the next trial regardless of
the values Υ1, · · · ,Υn−1. It means that the random process
satisfies the Markov property and can be modeled as a discrete-
time Markov chain as shown in Fig. 5.

The reconstruction error ēk is composed of the error gener-
ated at each Markov state, ēk|Υn = 1, ēk|Υn = 2, · · · . Finding
the distribution of ēk is equivalent to study the distribution of
the error at each state. From the former analysis, at the Markov
state k, the number of consecutive successes is k, which
indicates that all the past k prediction errors of the system
output satisfy the accuracy requirement, i.e., vεk ∈ Rk(τ ),
where vεk = [ε1, · · · εk] is the vector of k prediction errors of
the system output and Rk(τ ) is the region of k-dimensional
space bounded by the threshold [−τ τ ] in each dimension.
Then, ēk|Υn = k indicates that the k-step ahead prediction
errors of the system state satisfy the accuracy restriction, i.e.,
ek
∣∣vεk ∈ Rk(τ ). There is no error at state 0; when k ≥ 1,

the error at state k has the truncated joint normal distribution.
Fig. 4a shows the distribution of ek

∣∣vεk ∈ Rk(τ ), when
k = 2 in the former example. To the best of our knowledge,
there is no solution so far to calculate the covariance of joint
normal distributed variables truncated over a parallelogram
determined region. The direct calculation is nontrivial because
the bounds are linear functions of the variables. We solve this
problem with the help of matrix transformation.

According to Eq. (19) and Eq. (20), we know that ek
and εk are linearly transformed from ~δk by the matrices
αk and βk, respectively. In order to find the distribution of
ek|vεk ∈ Rk(τ ), we can firstly study ~δk|vεk ∈ Rk(τ ), then
transform the results by αk. With the help of Eq. (20), ~δk can
be represented by vεk to eliminate the variable:

vεk = Bk~δk (21)

whereBk = [β1, · · · , βk]T is a lower triangular square matrix.

For example, when k = 2, B2 =

[
−HK 0
−HAK −HK

]
. It has

full rank mk and is invertible. Thus,

~δk = B−1
k vεk. (22)

Then the problem is further converted to study the distribution
of vεk|vεk ∈ Rk(τ ).

As analyzed in [20] and [21], vεk has the MVN distribution
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TABLE I
A RANDOMLY GENERATED SYSTEM WITH THE FOLLOWING PARAMETERS FOR ILLUSTRATING THE ERROR DISTRIBUTION.

A B H R Q
[0.2237, 0.6533; -0.1705, 1.1203] [0; 0] [-0.8660, 1] 0.0403 [0.2471, -0.0052; -0.0052, 0.2527]

-5 0 5
-4

-3

-2

-1

0

1

2

3

4

truncated

(a)
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Fig. 4. The joint normal distribution of the errors, their truncated distribution over the region and the linear transformation among them seen from the density
contour when k = 2 and τ = 0.5 as an example: (a) the distribution of ek and ek|vεk ∈ Rk(τ); ek is linear transformed from ~δk by αk; (b) the
distribution of ~δk and ~δk|vεk ∈ Rk(τ); ~δk is transformed from vεk by B−1

k ; (c) the distribution of vεk and vεk|vεk ∈ Rk(τ); (d) the transformation
among three truncated errors.
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Fig. 5. Description of PKF using success-runs Markov chain.

with zero mean and a new covariance Sk, where

Sk =

 Hθ1H
T · · · Hθ1A

k−1THT

...
. . .

...
HAk−1θ1H

T · · · HθkH
T

 . (23)

Fig. 4c depicts the distribution of vεk when k = 2. The
principles axes are determined by the eigenvectors of S2. As
illustrated in Fig. 4b, the transformation of vεk by the matrix
Bk coincides with ~δ2. This is consistent with Eq. (22).

Consequently, vεk
∣∣vεk ∈ Rk(τ ) has a truncated MVN

distribution. Its probability density function satisfies:

fvεk(χ,Rk(τ )) =
ϕvεk(χ)

Φvεk
(
Rk(τ )

) (24)

where

ϕvεk(χ) =
1√

(2π)k|Sk|
exp (−1

2
χTSk

−1χ) (25)

is the probability density function (PDF) of vεk; Φvεk
(
τ) =

Pr
(
vεk ∈ Rk(τ )

)
=
∫
Rk(τ)

ϕvεk(χ) dχ is the probability
that vεk locates in the region Rk(τ ). The square area in
Fig. 4c depicts the distribution of the truncated vεk, i.e.,
vεk|vεk ∈ Rk(τ ), when k = 2 and τ = 0.5. Transforming
it with the matrix B−1

k , we can obtain the distribution of
truncated ~δk, ~δk|vεk ∈ Rk(τ ), as shown in Fig. 4b; further
transforming the results using αk, the distribution of truncated
ek, ek|vεk ∈ Rk(τ ), is depicted in Fig. 4a. In Fig. 4d, we
compare the distribution of these three truncated errors. For
vε2, the region is restricted by a rectangle in this case; while
for δ2 and e2, the regions are determined by parallelograms.

The mean of ek|vεk ∈ Rk(τ ) is a zero vector. The
covariance is nontrivial to calculate directly, since the lower
and upper bounds of the integral become linear functions of the
variables. However, from the above analysis, this problem can
be solved with the help of matrix transformation. As reported
in [20], [21], the covariance of doubly truncated MVN over
rectangles determined region can be derived using the Hessian
matrix of Eq. (25). It means we can calculate the covariance of
vεk|vεk ∈ Rk(τ ), S̄k. Combining this result with Eqs. (22)
and (19), the covariance of truncated ek over the parallelogram
determined region can be obtained by:

cov
(
ek|vεk ∈ Rk(τ )

)
= αkB

−1
k S̄kB

−1
k

T
αT
k . (26)

This is also the covariance of ēk at state k, cov(ēk|Υn = k),
as mentioned before. Thus, the overall covariance of ēk is:

cov(ēk) =

∞∑
k=0

pk cov(ēk|Υn = k) (27)

where pk = p0Φvεk
(
τ) is the steady state probability over

state k and
p0 =

1

1 +
∑∞

k=1 Φvεk
(
τ)

(28)

is the transmission rate.
In summary, the reconstruction error ēk consists of the

errors generated at each Markov state. At each state, the error
ēk|Υn = k is linearly transformed from a truncated k-variate
normal distribution over rectangles determined region to a
truncated n-variate normal distribution over parallelograms
determined region. The direct calculation of the covariance of
such distribution is nontrivial and there is no related solution
so far in the literature. Here we solve it by Eq. (26) with the
help of matrix transformation and obtain the overall covariance
of ēk by Eq. (27).

B. EPKF methods
As the deviation ēik does not satisfy a normal distribution,

we aim to approximate it and provide the linear solutions for
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Eq. (13) based on the above analysis.
The direct approximation is to take all ēik together as a

normal distribution. The mean is zero and the covariance can
be calculated by Eq. (27). Then by using Rand-ST with
cov(V i

k ) = cov(ēik), we can obtain the reconstruction solution.
However, as known from the analysis, ēik has different distribu-
tion at each state. A more elaborate way is to differentiate the
errors at each state. The error generated at each state ēk|Υn =
k is approximated as a normal distributed noise, with zero
mean and covariance cov(ēk|Υn = k) calculated by Eq. (26).
This requires an indicator nik to denote which state is the
reconstruction x̄ik from. The RD then uses Rand-ST with the
time variant covariance cov(V i

k |nik = k) = cov(ēk|Υn = k) to
produce the expanded state estimate X̃k. The estimate of the
original system corresponds to ¯̄xk = SlX̃k, where Sl = [I 0]
and I is the identity matrix to select the original state. The
reconstructed observation for each node can be calculated
using Eq. (13). This method is termed as EPKF-norm and
its diagram is shown in Fig. 6.

However, the reconstruction process of EPKF-norm can be
remarkably simplified in practical scenarios. The idea is to
directly let x̄ik = x̂ik, i.e., ēik = 0. This is motivated by three
reasons: firstly, the transmission rate decreases exponentially
as the threshold increases as indicated from Eq. (28); secondly,
ēk bounded by the threshold distributes more tightly to the
center compared with ek; thirdly, the KF with augmented
model in EPKF-norm is essentially to weight the prediction
from the system model and the reconstruction from each
TD, respectively. We explain them in detail as follows: as
analyzed in Section III-A2, the distributions of ek and vεk
are determined by the system model. Given a threshold, the
more loose the error distributes, the higher probability that
it locates outside the threshold, which results in a higher
transmission rate. In other words, for different system models,
the threshold has to increase as Sk increases to achieve the
same transmission rate, which results in a higher ēk. In this
sense, it seems that ēk cannot be ignored anymore. However,
it is not the absolute value of ēk determines whether it can
be neglected but the relative value w.r.t. ek, as the KF with
ma is essentially to weight the predicted states from the
system model and the reconstructions from each TD in EPKF-
norm. The relative distribution between ek and ēk determines
the weights. According to Eq. (28), the transmission rate
decreases exponentially as the threshold increases. A relative
small threshold compared with Sk (more specifically S1) can
achieve a high transmission rate reduction. Then ēk bounded
by the threshold distributes much closer to the center than ek.
This is illustrated by Fig. 4a. Thus, compared with ek, ēk can
be neglected.

The above analysis indicates that we can approximate
cov(Vk) = 0 in Eq. (17) to reduce the computation complexity.
There is no need to have the indicator nik in the RD and
the KF with ma can be replaced by a linear combination
of local reconstructions of each node with the corresponding
coefficient Ci

k. This simplified method is called EPKF-simp.
The main idea behind EPKF-simp is that instead of using the
complete KF equations to update the augmented states, it only
aims to find the required operations related with the update

PKF-en1

PKF-enm

mo

mo

PKF-de1
mo

PKF-dem
mo

... ...

RD

...KF
ma

TD 1

TD 

Fig. 6. The diagram of EPKF-norm that ēik is approximated as normal
distribution at each state. Each TD runs a PKF with the original system model
mo, Eqs. (1) and (2), to control the transmission of the local estimates and
the RD uses a KF with the augmented models ma, Eqs. (15) and (17), to
improve the estimate, where cov(V i

k |n
i
k = k) = cov(ēik|Υn = k) in Eq. (17)

depending on the state indicator ni
k .

of the original system state. We derive it in the following
paragraph.

To differentiate the notations from the former section, let
Ẍ−k = [¯̄x−k , x̄

1−
k , · · · , x̄m−k ]T denote the a priori estimate of

the augmented system state using Eq. (5). As cov(Vk) = 0,
the a posteriori estimate is Ẍk = [¯̄xk, x̄

1
k, · · · , x̄mk ], where the

last m elements are the reconstructions of each node. Thus,
the updated covariance of Ẍk can be written as follows:

P̈k =

[
σk 0
0 0

]
where σk corresponds to the updated estimate covariance of
xk using the augmented model ma. The a priori estimate
covariance using Eq. (6) satisfies:

P̈−k =

[
Σ11 Σ12

Σ21 Σ22

]
where

Σ11 = AkσkA
T
k +Qk is the a priori estimate covariance

of the original states;
Σ12 =

[
Σ11H

1T

k K1T

k , · · · , Σ11H
mT

k KmT

k

]
;

Σ21 = ΣT
12;

The ith diagonal elements of Σ22 is Σ22(i, i) =

Ki
kH

i
kΣ11H

iT

k KiT

k + Ki
kR

i
kK

iT

k and the (i, j) entry is
Σ22(i, j) = Ki

kH
i
kΣ11H

jT

k KjT

k .
Because of the special shape of the observation matrix C

and the zero measurement noise, the Kalman gain calculated
by Eq. (7) is actually:

Kk =
[
Σ12 Σ22

]T
Σ−122

For updating the original state, only the upper part of Kk

is needed, which results in the following coefficient vector:[
C1

k · · · Cm
k

]
= Σ12Σ−122 (29)

Thus, the a posteriori estimate of the original state combin-
ing Eq. (5) is:

¯̄xk = ¯̄x−k + C1
k(x̄1k − x̄1−k ) + · · ·+ Cm

k (x̄mk − x̄m−k )

= φkẌk−1 +

m∑
i=1

Ci
kx̄

i
k

(30)
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PKF-en1

PKF-enm

RD

mo

mo

PKF-de1
mo

PKF-dem
mo

... ... ...

TD  1

TD 

Fig. 7. The diagram of EPKF-simp that ēik is approximated as zero. Each TD
runs a PKF with the original system model mo, Eqs. (1) and (2), to control the
transmission of the local estimates and the RD uses the linear combination of
the local reconstructions with different weights Ci

k to improve the estimate.

where φk =
[
I −C1

k · · · − Cm
k

]
Fk. The final estimated

observation of each node is calculated using Eq. (14). The
diagram of EPKF-simp is shown in Fig. 7.

The approaches based on the combined system model are
not suitable for quickly change systems. The system matrix
Fk requires the local KF gains of each node Ki

k at each
time step. It brings synchronization overhead. However, the
implementation complexity can be significantly reduced for
time invariant systems, where the KF gain and the estimate
covariance converge after several steps. The transition matrix
Fk is thereby a constant, which can be easily calculated offline.
The RD stores this parameter and only needs to receive x̂ik and
compute Eq. (30) online.

IV. NUMERICAL ANALYSIS

This section estimates the performance of EPKF methods.
As mentioned before, they are fundamental approaches appli-
cable to any IoT monitored/controlled physical system that can
be modeled as a linear SS model. Here we use the pedestrian-
position application presented in [10] as a case study for
illustration purpose. As shown in Fig. 8, a number of Bluetooth
nodes are deployed on the ceiling of the shopping mall and a
smartphone carried by the pedestrian runs the dead reckoning
algorithm. In this application, the Bluetooth node is the TD
and the smart phone is the RD. The estimate metric is the
trade-off between transmission rate and the covariance of the
positioning error.

TD1 TD2

TD3
TD4

RD

x

y

Fig. 8. The schematic for pedestrian positioning application presented in [10].

A Kalman filter with the linear SS model in Eqs. (1) and (2)
is used to fuse the results from the inertial sensors of the
phone and the measurements from the TDs, considering the
limited processing ability and the energy constraints of the
smartphone. The step length, Lk, is obtained from the inertial
sensors, which acts as the control input, uk, in Eq. (1); the

received signal strength (RSS) from the TD i is used to
obtain the coordinates of the pedestrian based on the Bluetooth
propagation model, which is the observation, zik, in Eq. (2).
The state vector xk represents the (x, y) coordinates of the
pedestrian at time k; the transition matrix A is an identity
matrix. Assuming the pedestrian walks towards the x-axis,
then the control matrix Bk = [1, 0]T determines the effect
of uk−1 on xk; and the inaccuracy of the step length estimate
is characterized by the noise wk whose covariance is 0.04 in
our experiment. The observation zik is the measurement of the
x-axis from node i and Hi

k = [1, 0]. The measurement noise vik
represents the uncertainty of the Bluetooth propagation model.
The noise covariances of TD1 to TD4 are 0.0625, 0.25, 0.5625
and 1, respectively.

The original algorithm presented in [10] only utilizes the
observations from a single TD and this TD needs to trans-
mit uninterruptedly for real time positioning. When the RD
receives RSS from multi-nodes, it selects the closest one for
updating the predicted coordinates from the system model.
Taking the scenario in Fig. 8 for example, the RD selects
the RSS from TD2 for positioning. The covariance of the
estimate error in this case is 0.0807 m2. This is the best
result that can be achieved by using the data from a single
node for estimate, which is called TD2-limit in Fig. 9b. For
reducing the transmission rate while compensating the effect of
missed data on the estimate accuracy, TD2 could run a PKF-
en for preprocessing. It produces the local estimate x̂k and
follows the prediction of RD to guarantee the prediction error
within the user defined threshold τ . Here we assign different
values to τ and the tradeoff between transmission rate and
estimate accuracy is shown in Fig. 9b. When the transmission
rate is 1, the estimate accuracy is the same as the result from
[10]; as the transmission rate decreases, the estimate accuracy
decreases. In other words, the communication cost is reduced
at the expense of the decreased estimate quality.

In order to improve the estimate accuracy while keeping
the same communication cost of TD2, the RD can further
exploit the data from other three TDs. The best estimate is
obtained by Rand-ST [31] using all data from four TDs. It
is called all-limit in Fig. 9b. For enabling EPKF-norm, we
approximate ēk at each state as a normal distribution. The
covariance is calculated using Eq. (26). To enable EPKF-
simp, we approximate the reconstruction error as zero. Fig. 9b
demonstrates the efficiency of EPKF methods. Compared with
[10], they improve the positioning accuracy by 67.77%, when
all data of TDs are used (i.e., transmission rate equals 1),
which is equivalent to use Rand-ST [31]. They achieve the
same estimate accuracy as [10], but only require around 10%
data from TD2. There is no estimate difference between
EPKF-simp and EPKF-norm, when the transmission rate
is one. However, as the transmission rate decreases, EPKF-
norm produces slightly better estimates. This is due to the
fact that the distribution of the prediction error is fixed for a
given system, while the distribution of ēk is determined by the
threshold. As the threshold increases, ēk satisfies closer to the
normal distribution at each Markov state. Thus, the normal
approximation is better when the transmission rate is low.
However, the superiority of EPKF-norm over EPKF-simp is
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Fig. 9. Comparisons of the trade-off between transmission rate and position-
ing accuracy among five methods, where TDx-limit is derived by [10] using
all data from the single TDx and all-limit is obtained by [31] using all data
from four TDs. (a) only the data of TD1; (b) only the data of TD2; (c) only
the data of TD3; (d) only the data of TD4, is used by [10] and [31] as the
pedestrian moves towards the direction of x-axis.

not very obvious. There is only 8.33% improvement when the
transmission rate is 0.0662. This can be explained by Eq. (28):
the increase of the threshold results in the exponential decrease
of the transmission rate, while it is not big enough to make
the error become the normal distribution.

The similar results also hold for TD1, TD3 and TD 4 as
shown in Figs. 9a, 9c and 9d, respectively. As the pedestrian
moves towards the direction of x-axis, the covariance of
the estimate error becomes to 0.1347 m2 if the smartphone
only uses all data from TD3 for positioning. It is 67.64%
bigger than using the data from TD2 while 36.55% smaller
than using the data from TD4. This is because the increased
measurement noise of the TD results in less trustful estimates.
Due to the same reason, the gain by using the data from
other TDs improves as the measurement noise of the TD
increases. Among them, TD1 has the lowest measurement
noise. The estimate covariance using [10] is 0.0337 m2. It
can be improved by 23.18% using data from other TDs with
Rand-ST, which is 2 times smaller than the gain in TD2.
To achieve the same estimate quality as [10], EPKF methods
require TD1 to transmit around 35% transmission. The rate
increases compared with the one of TD2 due to the decreased
gain.

In summary, EPKF methods drastically improve the esti-
mate accuracy by exploiting the data from other TDs. They
only require 10% transmission to achieve the same estimate
quality as using KF in the traditional manner as in [10]. The
required transmission becomes less as the measurement noise
increases, which results in a lower level of energy consumption
for the device. Compared with EPKF-norm, EPKF-simp is
more preferred because of its low complexity and similar
estimate accuracy.

V. CONCLUSION AND FUTURE WORK

This work proposes EPKF methods to avoid the unneces-
sary transmissions for energy constrained IoT devices while
keeping the functionality of KF. Each transmitting device
(TD) independently compresses its transmission based on the
temporal correlation; and the receiving device (RD) further
exploits the spatial correlation among multiple TDs to improve
the reconstruction quality.

The reconstruction problem mentioned above is nonlinear,
which is hard to be solved by the energy constrained devices.
To provide the linear solutions with reduced complexity, a
deep analysis regarding the local estimate error is carried
out. The error is produced at different Markov states and it
has a truncated MVN distribution over parallelograms deter-
mined region at each state. There is no solution so far for
calculating the covariance of such a variable. We obtain the
error covariance with the help of Hessian matrix of MVN’s
PDF and the matrix transformation. Based on the analysis,
two linear solutions are proposed: EPKF-norm and EPKF-
simp. The former one differentiates the error at each Markov
state and approximates it as the corresponding Gaussian noise.
The RD then uses a KF with augmented system model and a
time variant covariance of the measurement noise to produce
the reconstruction. The complexity of EPKF-norm is further
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reduced by EPKF-simp, where the reconstruction error is
simply approximated as zero. The RD then uses the linear
combinations of the local estimates with the corresponding
weights for reconstruction.

The proposed methods are fundamental approaches appli-
cable to any IoT monitored/controlled physical system that
can be modeled as a linear state space representation. The
pedestrian-position application is used as a case study to
demonstrate the efficiency of EPKF methods in the simulation.
EPKF methods decrease the transmission rate to around 10%
while achieving the same positioning accuracy as using KF
in the traditional manner as in [10]. As the measurement
noise increases, the required transmission becomes less, which
results in a lower level of energy consumption for the device.
Compared with EPKF-norm, EPKF-simp is more preferred
due to its low complexity and similar estimate accuracy.
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