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Abstract

ASICs for Stochastic Computing conditions are designed for higher energy-efficiency or performance by sacrificing
computational accuracy due to intentional circuit timing violations. To optimize the stochastic behavior, iterative timing
analysis campaigns have to be carried out for a variety of circuit timing corner cases. However, the application of
common event-driven logic simulators usually leads to excessive analysis runtimes, increasing design time for hardware
developers. In this paper, a gate-level netlist-oriented FPGA-based timing analysis framework is proposed, offering a
runtime-configuration mechanism for emulating different timing corner cases in hardware without requiring multiple
FPGA bitstreams. Logic gates are instrumented with a quantization-based delay model and a critical path selection
algorithm is used to reduce the FPGA resource overhead. For an exemplary design space exploration of stochastic
CORDIC units, speed-up factors of up to 48 for 10 ps or 476 for 100 ps timing quantization are achieved while maintaining
timing behavior deviations lower than 1.5% or 4% to timing simulations, respectively.
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1. Introduction

In recent portable embedded Computer Vision systems,
computational intense tasks with stringent performance
constraints have to be performed within a very limited
power budget of just a few Watts. To compete with these
challenges, Stochastic Computing [1] has emerged as a de-
sign approach for energy-efficient systems. By relaxing
specification constraints like operation frequency, supply
voltage, temperature, etc., the design space of a proces-
sor architecture is extended. Thus, designers can exploit
additional improvements in processing performance and
energy efficiency while accepting occasional circuit timing
violations and therefore incorrect computational results. A
common characteristic of Computer Vision applications
is that precise computations are not often necessary [2].
For example, during an analysis of typical edge detection
or image filtering algorithms, a high noise tolerance and
error-resilient operation is found, so there exists a margin
for stochastic arithmetic errors occurring beyond the tight
conventional limits for accurate circuit operation [3, 4].
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One of the main challenges in Stochastic Computing is
the increasing development time for optimizing the trade-
offs between the power consumption, performance benefits
and computational accuracy tolerance. Most frequently,
iterative gate-level timing simulations are performed in
order to evaluate the impact of path timing violations on
arithmetic results and to optimize stochastic circuit tech-
niques and mechanisms. These netlist simulations with
annotated timing information are very time-consuming, so
designers are forced to heavily constrain the completeness
of timing analysis campaigns in order to obtain acceptable
simulation runtimes.

In a previously published paper [5], an emulation-based
timing analysis framework (FLINT+) is proposed to tackle
the challenge of speeding-up Stochastic Computing anal-
ysis campaigns. The timing behavior of gate-level ASIC
netlists is emulated using FPGA devices, taking advan-
tage of high-speed parallel processing possible in hardware
implementations.

This paper presents the extension of this framework and
describes all implemented concepts of Stochastic Computing
in detail, including a new case study to demonstrate the
potential of the proposed FLINT+ framework. The main
contributions are:

• A FPGA-synthesizable delay model for instrument-
ing gate-level ASIC netlists with timing behavior,
optimized for carrying out timing analysis campaigns
at high emulation speed.

• Implementation of a parameter configuration chain
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mechanism suitable for configuring the timing be-
havior at runtime to offer adaptation to different
stochastic timing conditions without requiring the
generation of a new FPGA configuration bitstream.

• Usage of a critical path selection to collect only rele-
vant logic gates for a desired worst-case timing instru-
mentation condition, decreasing the resource over-
head and routing complexity of the FPGA design.

• Exhaustive analysis of the proposed framework in
terms of timing emulation accuracy, speed-up to soft-
ware simulations and FPGA resource utilization.

• A Case study in which the accuracy-performance
stochastic design space of accurate and approximate
CORDIC hardware implementations is explored by
using the FLINT+ framework.

The contribution outline of this paper is given as fol-
lows: Section 2 presents a selection of related work for
instrumenting netlists and speeding-up timing analyses. In
Section 3, the proposed instrumentation model, configura-
tion mechanism, iterative critical path selection, framework
and toolchain are described in detail. Performance evalua-
tion results are given in Section 4. The CORDIC stochastic
design space exploration case study is presented in Sec-
tion 5 to demonstrate the analysis potential of the proposed
framework. Finally, in Section 6, a conclusion is given.

2. Related Work

Previously published approaches to instrument circuits
with timing information are mainly designed for speeding-
up fault injection and propagation campaigns. In Table 1,
a selection of related work is presented with key features
of the different implementations. A common feature of all
related work is to perform a gate-level netlist analysis with
higher speed compared to a standard timing simulation.
First of all, there are techniques exploiting operation prop-
erties of event-driven logic simulators. In [6], propagation
delays of combinational gate circuits are transformed into
structural information by expanding the circuit topology.
Multiple circuit outputs are generated, each representing
the output at a specific quantized time step. This allows to
analyze transition propagation with pure functional zero-
delay simulations, gaining a speed-up of two to four orders
in magnitude. A drawback of this method is the rising
expansion complexity with finer time quantization and
non-unit or asymmetric gate propagation delays.

Other related work in the field of fault injection achieve
simulation speed-up by exploiting the transient nature
of radiation-induced events. In [7], this is performed by
making probabilistic assumptions on register setup time vi-
olations and omitting the timing simulation for propagation
events without fault effects. In [8], a timing simulation is
applied only in fault injection intervals and a faster parallel
functional RTL simulation is used in other intervals. The
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Figure 1: Approach used to model the propagation delay of a standard
gate using a counter. The number of reference clock cycles until Q int

is propagated to Q depends on the chosen time quantization and the
specific delay parameters for a gate.

authors of [14] use software-based timing analysis to obtain
fault latching probabilities in a gate-level circuit and study
the effects of probable faults by using a fast accompanying
FPGA emulation and a runtime scan chain-based injection
mechanism. The described procedures are beneficial for
analyzing localized fault injections, but are not applicable
to stochastic operation conditions, where errors are contin-
uously induced by circuit timing violations. Thus, in the
research field of Stochastic Computing, a complete circuit
timing analysis has to be performed.

Since the availability of high-density FPGA devices,
the emulation of the circuit timing behavior has become
feasible to utilize speed advantages associated with hard-
ware implementations. The authors of [9] and [10] propose
timing instrumentation models for standard cell gates by
using shift registers or non-linear counters for delaying
gate input transitions and emulating propagation behavior.
Both approaches correlate an emulation clock cycle to a
time quantum. Specific propagation delays for each gate
are defined by the shift register length or by counter values.
In [11], these gate-level timing approaches are combined
with RTL co-emulation in the AMUSE soft-error evaluation
framework, achieving a speed-up of up to three orders of
magnitude compared to simulation-based fault injection
campaigns. A different timing emulation approach in the
field of fault injection is presented in [12], where shift reg-
isters and timing quantization are applied to model fault
duration patterns within a single circuit clock cycle. Also
an abstract histogram-based fault model simulator is im-
plemented for FPGA devices by using timing quantization
and a clock cycle counter [13].

Emulation-based approaches that embed fixed timing
information in the netlist instrumentation during FPGA
synthesis are disadvantageous for stochastic timing analy-
sis. Changes to the circuit timing require time-consuming
re-synthesis of the design, which is narrowing the usability
in variable timing cases, e.g., due to different voltage and
temperature environments. For example, the chip design
presented in [15] contains 16 different precise and approxi-
mate adder architectures for the purpose of exploring the
stochastic behavior of arithmetic circuits within a wide
range of ambient temperature and supply voltage condi-
tions. Fabricated in a 1 µm high-temperature SOI CMOS
technology, the operation range includes temperatures from
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Table 1: Comparison of Circuit Timing Implementation Approaches

Year Ref. Modeling Level Target Circuit Timing Representation SIM EMU Configuration Stage

2003 [6] Gate propagation delay Gate netlist Circuit topology expansion X -

2004 [7] Setup time violations Gate netlist Probabilistic assumptions X -

2007 [8] Gate propagation delay Gate netlist & RTL Gate/RTL co-simulation X -

2007 [9] Gate propagation delay Gate netlist Shift registers X FPGA synthesis

2009 [10] Analog output voltage Gate netlist Non-linear counters X FPGA synthesis

2012 [11] cf. [9, 10] Gate netlist & RTL cf. [9, 10], Co-EMU X FPGA synthesis

2014 [12] Fault duration Gate netlist & RTL Shift registers X Runtime scan chain

2015 [13] Fault duration Circuit model Time-Step Counter X Runtime

2015 [14] Gate propagation delay Gate netlist Probabilistic assumptions X X Runtime scan chain

2017 this, [5] Gate propagation delay Gate netlist Counters / decrementers X Runtime scan chain

25 to 250 ◦C and supply voltages from 1.8 to 3.6 V. A fine-
grained design space exploration of the stochastic regimes
could require the analysis of about 50 different tempera-
tures and 20 supply voltages, resulting in 1000 timing corner
cases. Therefore, when using fixed-timing emulation-based
approaches, the generation of 1000 FPGA bitstreams for a
single circuit design would be necessary.

To cope with FPGA-based stochastic timing analysis, a
runtime-configurable timing emulation methodology, suit-
able for executing timing analysis campaigns under varying
stochastic conditions with a single instrumented gate netlist
design, is presented in [5]. The configuration mechanism is
a scan chain-based approach, which extends a previously
published FauLt INjection Tool (FLINT) [16] framework.

In this paper, an additional register-to-register path
analysis of the gate-level netlist is included into the frame-
work. Since the useful stochastic operation regime is lim-
ited by the error tolerance of a certain application, only a
fraction of all possible timing paths will be ever violated.
The presented path analysis allows to omit logic gates
from instrumentation that will not cause any timing viola-
tion. Thus, the instrumentation overhead can be reduced.
Because a full path analysis of a gate-level design is too
complex and computationally impractical, a critical path
selection and path pruning algorithm is implemented to
consider only relevant paths for instrumentation. Similar
approaches are applied in the field of process variation
analysis to identify testable long paths in a circuit [17] and
to prune paths that are insignificant and redundant for
delay fault testing [18].

3. The Runtime-Configurable Timing Emulation
Framework

The proposed emulation framework utilizes four ba-
sic concepts, which are time quantization, instrumented
standard cells, iterative critical path selection and timing
parameter configurability. Detailed implementation aspects
are covered in this section. Additionally, information is
provided on the used FPGA communication framework
and the software toolchain to perform gate-level netlist
instrumentation.

(CELLTYPE ”XOR2”)
(INSTANCE mul 27 31 /g13201 )
(DELAY

(ABSOLUTE
(PORT A ( : : 1 . 2 ) )
(PORT B ( : : 1 . 2 ) )
(IOPATH ( posedge A) Q ( : : 2 6 2 9 ) ( : : 2 9 3 2 ) )
(IOPATH ( negedge A) Q ( : : 3 0 0 4 ) ( : : 3 1 4 2 ) )
(IOPATH ( posedge B) Q ( : : 2 3 9 2 ) ( : : 2 7 8 1 ) )
(IOPATH ( negedge B) Q ( : : 3 1 3 2 ) ( : : 3 0 7 8 ) ) ) )

Listing 1: Excerpt from a SDF file defining eight propagation delay
parameters on a picosecond scale for a 2-input XOR gate. The
IOPATH statement defines rising and falling edge output propagation
delays for each possible gate input transition. PORT values are model
constructs to account for additional input interconnection delays.

For time quantization, a decrementing counter-based
approach is applied and injected for each instrumented stan-
dard cell of the gate-level netlist under analysis. Besides
this gate instrumentation model, all instrumented cells
identified by the path selection process are interconnected
by a configuration chain for timing parameters. This offers
the runtime configurability required for analyzing variable
timing corner cases.

3.1. Time Quantization

Fig. 1 illustrates a common approach to model gate
propagation delays. Each gate input is annotated with
specific time weights τp, by which logic transitions at the
gate output Q are delayed when a transition at the corre-
sponding input occurs. For an ASIC netlist, these values
are determined during synthesis and stored in a Standard
Delay Format (SDF) file [19] with a maximum of four the-
oretically independent propagation parameters per input
for each combination of input and output rising and falling
transitions. For an n-input combinational gate, the number
of delay parameters therefore scales with 4n as exemplarily
shown in Listing 1.

In the proposed implementation, gate propagation de-
lays are emulated in hardware by using decrementing delay
counters (Fig. 1, right-hand side). When a specific time
quantum (i.e., timing resolution) is assigned to the refer-
ence clock period, the number of elapsed clock cycles for a
transition from Q int to the instrumented output Q directly
corresponds to a propagation delay. Emulation speed is

3



LUTs

D
Q

D
Q

D
Q

load_en

A B q_int

A

B
q_int

Standard Cell 
Library

load_in

clk_load

load_out

en

LATCH

D        Q

1

0

0

MSB

Decrementer

Count

Preset

D
Q

D     Q

en

Q

D

SRG
(7 stg)

Q

D

SRG
(7 stg)

Q

D

SRG 
(4 stg)

Q

D

SRG
(2 stg)

Q

D

Parallel 
SRGs 

(4n stg)
Q addr

Q

4 clk_ref cycles
2 clk_ref cycles

Figure 2: Schematic of instrumentation for combinational standard
cells. Unless otherwise specified, the elements are clocked with the
quantization reference clock clk ref. For loading timing parameters,
a separate clock clk load is used. Red and green dashed lines denote
paths that have a latency of four and two reference clock cycles,
respectively.
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then dependent on two factors, reference clock frequency
and time quantization resolution.

3.2. Instrumented Standard Cells

For an ASIC standard cell library, timing instrumenta-
tion models for combinational and sequential gates need
to be supplied. The schematic of a FLINT+-instrumented
combinational standard cell is shown in Fig. 2. This cell
consists of the original logic gate from the cell library, the
decrementing delay counter, an output transition detection
circuit to trigger the decrementing process, a look-up table-
based address generator to select the correct propagation

delay parameter, and a shift register-based storage element
to keep the 4n programmable timing parameter values.

To understand the instrumentation functionality, an
output transition at the original gate output q int shall be
considered. This output, combined with the current and
previous cell inputs delayed by shift registers, are used to
identify pre- and post-transition cell state and to select the
correct propagation parameter by a look-up table-based
address generator. The addressed parameter value, coming
from the programmed shift register-based storage element,
is latched onto the preset input of the decrementer. If the
original gate output q int and the instrumented output
Q are not equivalent, an XOR gate triggers the counting
process. When the decrementer output wraps around, the
most significant bit is set, deactivating the counter and
enabling the instrumented cell output Q, performing the
delayed transition after the desired propagation interval. Q
is connected to the inputs of other logic gates within the
netlist, so the output transition itself triggers the propaga-
tion process in the next instrumented cells.

Since the number of address generator inputs and ad-
dressable delay parameters increases with the gate input
number n, the required look-up table can become large and
easily exceeds the size of 6-input LUTs on Xilinx Virtex-6
FPGA devices used for this framework evaluation [20]. In
these cases, the table is mapped into several LUTs, intro-
ducing additional logic stages and routing, which lengthen
the time until a stable delay parameter value is available.
To avoid a reference clock frequency reduction and less
emulation speed, the parameter latch enable is delayed
by 4 clock cycles and the count trigger by 2 more cycles
using additional shift registers. This allows the complete
delay parameter selection process from the cell inputs to
the decrementer to take place in 6 clock cycles instead of
a single one, which greatly relaxes the path timing con-
straints for FPGA synthesis. Up to a depth of 32 stages,
every shift register of an instrumented cell can be imple-
mented efficiently within a single LUT on Virtex-6 FPGA
devices [20], which minimizes the resource overhead. This
implementation allows to keep the reference clock frequency
high, but introduces a minimum propagation latency from
the cell inputs to the instrumented output. However, as
long as all quantized gate delays for a given timing resolu-
tion are large enough to exceed this amount of latency, the
additional cycles can be compensated in the configurable
delay parameter values.

In contrast to combinational cells, edge-triggered se-
quential flip-flop cells can be instrumented with a simplified
address generator, as depicted in Fig. 3. Here, it is only nec-
essary to evaluate the current state of q int, as a transition
occurs on system clock edges (sys clk ff, the quantized
original circuit clock) exclusively and the previous state is
implicitly known. Exceptions are asynchronous set or reset
inputs like RN, which are also evaluated to unambiguously
identify asynchronous transition trigger events. In total,
only 3 delay parameters need to be configured for sequen-
tial cells, which are the low-to-high and the high-to-low
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propagation delay of Q after a rising clock edge as well as
one propagation delay parameter for an asynchronous set
or reset.

Meta-stability of instrumented flip-flop outputs due to
setup or hold time violations is intentionally ignored in the
instrumentation model. However, this is no limitation for
the evaluation of arithmetic results within the stochastic
operation regime. When using standard gate-level timing
simulations, the analysis of output results also requires the
deactivation of setup and hold timing checks, otherwise
undefined ’X’ states are induced for timing-violated signals
which cannot be compared to arithmetic reference results.
Therefore, the proposed instrumentation model implements
the operation- and bit-true reference simulation behavior
used in this work and does not require additional circuitry
to handle meta-stability effects.

3.3. Critical Path Selection and Instrumented ASIC Gate-
Level Netlist Generation

From a gate-level netlist perspective, three tasks have
to be performed for instrumentation: selecting gates to be
instrumented, replacing original gates by the instrumen-
tation models and establishing a parameter configuration
chain between all instrumented cells.

The selection of gates depends on to what extent the
stochastic operation regime shall be exploited, i.e., which
register-to-register timing paths are expected to be violated.
Since the reasonable range is influenced by application prop-
erties and the architecture of the analyzed hardware itself,
a minimum clock period within the stochastic regime is con-
figured for the toolflow to define an extreme operation case.
If the delay of a path is longer than the configured clock
period, a path violation can occur and all gates forming this
path need to be instrumented to obtain the precise timing
error behavior. Gates that exclusively form shorter paths
do not contribute to the actual stochastic error output of
a circuit and therefore are omitted from instrumentation,
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Figure 5: FPGA framework used for FLINT+ netlist instrumentation.

retaining the original functional gate description and saving
instrumentation model overhead. As an example, consider
Fig. 4. Gates marked in red form the overall critical path
and require timing instrumentation if the circuit timing is
violated. Any other gate does not need to emulate timing
behavior unless the longest path that traverses the gate
is also violated. The selection of critical paths for instru-
mentation is achieved during ASIC netlist synthesis. An
iterative algorithm is used to find the longest path through
each gate. The algorithm as well as the instrumentation
software toolchain is described in detail in Section 3.5.

All standard cells in the netlist selected from the pre-
vious stochastic regime path analysis are replaced by the
corresponding timing instrumentation model cell from Sec-
tion 3.2. To load the shift register-based storage element
with the desired timing information, a scan chain-like pa-
rameter configuration approach is implemented. Via pro-
gramming ports load in and load out (see Fig. 2), a chain
is formed by all instrumented cells to shift delay param-
eter values to the corresponding gate. Since the chain is
pervaded throughout the whole standard cell design, pa-
rameter shifting is performed on a separate clock clk load

significantly slower than the quantization reference clock to
account for large routing delays. Once a set of parameters
is configured, exhaustive analyses for this timing case can
be performed without re-configuration, mitigating the slow
load clock in total.

3.4. FPGA Emulation Framework

For performing emulation-based timing analysis cam-
paigns, the instrumented ASIC netlist is inserted into a
Unified EMUlation Framework (UEMU) [21] depicted in
Fig. 5. It contains the instrumented ASIC netlist itself,
memories, control logic and control registers. A clock gen-
erator generates the reference clock clk ref, the quantized
system clock sys clk ff for sequential cells and the pa-
rameter configuration clock clk load. An Ethernet link
between the FPGA platform and a host PC is established
to transfer timing parameters, test operands and results.
Interface functions for MATLAB are available to easily com-
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bine arithmetic test pattern generation, transfer to/from
the emulation system and execution control as well as data
evaluation.

After an initial transfer of timing configuration pa-
rameters and operand data, the execution is performed
autonomously within the FPGA emulation framework. An
integrated control FSM takes care of timing parameter
configuration, applying operands to the netlist under test
and storing result data. When the configured operations
are done, a status flag is set, indicating that result data can
be transferred back to the host. This procedure minimizes
time-consuming transfer overhead between FPGA platform
and the host PC.

3.5. Instrumentation Software Toolchain

Prior to FPGA synthesis, the instrumented ASIC netlist
and standard cell library as well as timing parameters have
to be generated. For this process, Python script-based in-
strumentation tools from the FLINT fault injection method-
ology presented in [16] are used in an extended version.
The original ASIC gate-level netlist and the corresponding
SDF timing information are generated from a typical ASIC
synthesis design flow. An extension to the standard ASIC
flow is used for instrumentation analysis.

To identify gates to be instrumented for a given stochas-
tic operation regime, the longest timing path traversing
each particular gate in the netlist has to be found, which
was already pointed out in Section 3.3. However, the gen-
eration of an ordinary timing report during ASIC synthesis
is not feasible for this analysis task. Since static timing

# l i s t of a l l c e l l s to be po s s i b l y instrumented
set s e l e c t e d c e l l s [ g e t c e l l s −h i e r a r ch i c a l {∗ } ]
set a l r eady ins t rumented [ l i s t ]

while 1 {
# find c r i t i c a l path through at l e a s t one s e l . c e l l

r epor t t iming −from [ a l l r e g i s t e r s ] \
−through $ s e l e c t e d c e l l s −to [ a l l r e g i s t e r s ] \
− fu l l p in names > TEMPFILE

# open generated timing report and read in l i n e s
set f i l e p o i n t e r [open ”TEMPFILE” ” r ” ]
set f i l e d a t a [ read $ f i l e p o i n t e r ]
set f i l e d a t a [ sp l i t $ f i l e d a t a ”\n” ]
close $ f i l e p o i n t e r

set to ins t rument [ l i s t ]
foreach f i l e l i n e $ f i l e d a t a {

# i f report empty, c l ear s e l e c t i on and abort
i f { −− no paths in r epor t −− } {

set s e l e c t e d c e l l s [ l i s t ]
break

}

# i f a r e g i s t e r c e l l i s found, i s o l a t e cel lname
# and remove i t from c e l l s e l e c t i on
# to al low other r e g i s t e r endpoints to be found

i f { −− c l o ck input found −− } {
set ce l lname −− i n s t ance name from repor t −−
set s e l e c t e d c e l l s [ r emove f r om co l l e c t i on \

$ s e l e c t e d c e l l s $ce l lname ]
set a r r i v a l t i m e −− time from repor t −−

}
# i f output of a gate i s in path , instrument gate
# and remove i t from c e l l s e l e c t i on

i f { −− gate output found −− } {
set ce l lname −− i n s t ance name from repor t −−

# i f gate a lready instrumented, ignore i t
i f { [ lsearch −exact $a l ready ins t rumented \

$cel lname ] == −1} {
lappend to ins t rument $ce l lname
lappend a l r eady ins t rumented $cel lname
set s e l e c t e d c e l l s [ r emove f r om co l l e c t i on \

$ s e l e c t e d c e l l s $ce l lname ]
}
set a r r i v a l t i m e −− time from repor t −−

}
}

# write out newly instrumented gates for
# the current worst path period

foreach ce l lname $to ins t rument {
puts ” $ a r r i v a l t i m e \ t$ce l lname ”

}

# i f a l l c e l l s are ana lyzed , abort
i f { [ l length $ s e l e c t e d c e l l s ] == 0} break

}

Listing 2: Tcl script for Cadence RTL Compiler (simplified) of the
iterative critical path selection process after ASIC synthesis.
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analysis is endpoint-oriented, the report can be configured
to cover the worst paths to each flip-flop or primary output
in the design. The coverage of all other logic gates in the
netlist is uncertain unless all existing paths are printed out.
Thus, the definition of a longest path and consequently, a
critical instrumentation clock period for every gate within
the netlist with a single timing report is extremely inef-
ficient and impractical in terms of storage memory and
computation time, even for netlists of moderate size.

Therefore, instead of generating a single timing report
for the complete design, multiple temporary timing re-
ports with systematic iterative cell instance restrictions are
generated during ASIC synthesis. A simplified Tcl imple-
mentation of the algorithm for the Cadence RTL Compiler
is shown in Listing 2. Initially, the path analysis is allowed
to traverse through any gate in the netlist, resulting in
the overall critical path of the design. The gate instances
forming the critical path are extracted by a timing report
parser and annotated with the path delay. A violation of
the annotated worst-case timing denotes the starting point
for stochastic errors that may be produced by these gates.
Then, the newly annotated gates are removed from the list
of traversed gates that the path analysis should consider.
Since at least one gate from the list has to be covered,
the next timing report will not output the overall critical
path, but the longest path through the remaining restricted
netlist fraction. By iteratively generating new timing re-
ports, annotating previously uncovered gate instances and
further restricting the path analysis, it can be assured that
exactly one longest path and one critical clock period for
timing violations are reported for each gate instance in the
netlist. This minimizes the necessary memory requirements
and computation time for the longest path selection.

As depicted in Fig. 6, the remaining FLINT+ tool work-
flow is divided into three major parts, i.e., selecting cells for
instrumentation, cell instrumentation and timing parame-
ter conversion. The first step contains the analysis of the
critical clock periods for each gate instance. Parameterized
by user input, all standard gates that require instrumenta-
tion are identified for a certain stochastic regime, given by
the minimum system clock period.

In the second step, a functional logic description of the
standard cell library is extended with the instrumentation
models from Figs. 2 and 3. Then, in the ASIC netlist,
each standard cell to be instrumented is replaced by the
modified cell and the timing parameter configuration chain
is connected. In the current tool, the appearance order of
cells in the netlist also determines the chain connection
order. This is not an optimum solution, because it does not
ensure that both netlist signal path and the configuration
chain are routed efficiently. However, it is planned to refine
this step by a circuit topology-aware connection algorithm,
which eases FPGA routing by ordering the configuration
chain in parallel to the netlist signal path whenever possible.

In the third step, propagation delay values for all instru-
mented gates are taken from the SDF file and converted to
counter preset values for a given timing resolution. This

parameter stream is transferred to the emulation system
prior to execution.

4. Performance Evaluation

In order to analyze the dependencies between time
quantum resolution, timing emulation accuracy, speed-up
to simulations and FPGA resources overhead due to in-
strumentation, arithmetic units are used as evaluation
samples. Structural HDL descriptions of a ripple-carry
adder, ripple-carry array multiplier and a non-restoring
array divider are synthesized to ASIC gate-level netlists.
To obtain a set of different design sizes, the units are syn-
thesized for operand bitwidths between 8 and 896 bits.
The standard cell library used for synthesis belongs to a
1 µm high-temperature SOI CMOS technology provided by
the Fraunhofer Institute for Microelectronic Circuits and
Systems [22]. Worst-case propagation delay information is
generated for a typical environmental corner case of 175 ◦C
chip temperature and 3.3 V supply voltage. The netlists
are evaluated with a fixed set of 105 random-generated
arithmetic operations. A ML605 development board with
a Xilinx Virtex-6 XC6VLX240T-1 FPGA device is used
as the target platform for synthesis and emulation [23].
All SDF timing simulations for speed-up comparisons are
performed using the ModelSim HDL simulator [24] with
deactivated timing checks (+notimingchecks parameter) to
suppress undefined arithmetic results on a compute server
equipped with an Intel Xeon E5-2683 CPU (2.1 GHz).

4.1. Analysis of Error Occurrences

At first, the number of error occurrences in a set of
arithmetic results shall be considered when timing paths
are violated. The top row of Fig. 7 depicts this metric
for the profiled 16-bit adder with a critical path length of
102 ns, for the 16-bit multiplier with 355 ns and for the 16-
bit divider with 2300 ns, respectively. The number of error
occurrences rises for all units when more timing paths are
violated at shorter periods of the quantized system clock
sys clk ff.

When the time quantum is increased from 1 ps to larger
values, deviations appear due to delay parameter rounding
errors. For a resolution of 500 ps, the number of error occur-
rences is heavily overestimated. This is due to the minimum
propagation latency induced by the gate instrumentation
circuit, described in Section 3.2, which is 9 reference clock
cycles for the current implementation. Delays smaller than
4.5 ns are then distorted for 500 ps timing resolution. Thus,
1, 10 and 100 ps are used as representative time quanti-
zations for the following evaluation. Larger time quanta
invoke a higher speed-up at the expense of reduced timing
behavior accuracy, since a larger time interval is processed
per reference clock cycle.

When lower precision time quantization is used, round-
ing effects of the delay parameters have an impact on the
timing accuracy. These effects are not unique to the pre-
sented methodology, time interval rounding also occurs in
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Figure 7: Top row: Influence of time quantum resolution on the number of error occurrences for a 16-bit adder (left subfigure), 16-bit multiplier
(center subfigure) and 16-bit divider (right subfigure). 105 operations are performed for system clock periods from 8 to 110 ns in steps of 1 ns
for the adder, from 8 to 360 ns in steps of 2 ns for the multiplier and from 10 to 2300 ns in steps of 10 ns for the divider, respectively. Center
row: Influence of time quantum resolution on the mean absolute error magnitude of 105 operations for a 16-bit adder (left subfigure), 16-bit
multiplier (center subfigure) and 16-bit divider (right subfigure). Bottom row: Number of required instrumented gates as a function of the
system clock period for a 16-bit adder (left subfigure), 16-bit multiplier (center subfigure) and 16-bit divider (right subfigure). The gray
dashed lines denote system clock periods that correspond to the critical path (100% critical operation frequency) and to frequency overscaling
conditions of 110% to 180% critical operation frequency.

timing simulations during switching event generation when
the provided SDF parameters have a higher resolution than
the simulator timescale. But in contrast to event-driven
simulators, where the user normally has no influence on
propagation event generation, the instrumentation software
toolchain of the proposed framework supports three ways to
calculate delay parameters from SDF values: rounding to
the nearest quantized time interval, flooring the parameter
value or ceiling it. To present a more detailed view on the

circuit timing emulation accuracy, a differential compari-
son to reference timing simulations with a delay parameter
resolution of 1 ps shall be considered. The influence of the
rounding method on the number of error occurrences is
depicted in Fig. 8 as a normalized difference to SDF simu-
lation. For time quanta smaller than 10 ps, the difference
is below 0.8 % when rounding to the nearest time interval.
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Figure 8: Difference in number of error occurrences to SDF simulation for a 16-bit adder (top row), 16-bit multiplier (center row) and 16-bit
divider (bottom row) when rounding timing parameters for lower precision time quanta. From left to right: Rounding to nearest quantized
step, flooring, and ceiling. 100 normalized percent correspond to 105 operations performed for each system clock period.

4.2. Analysis of Error Magnitude

For arithmetic units like adders, multipliers and di-
viders, the error magnitude, i.e., the difference between the
arithmetic results of timing emulation and timing simula-
tion is another metric to evaluate under stochastic condi-
tions. The center row of Fig. 7 shows the absolute logarith-
mic mean error magnitude for each unit and system clock
period. Fig. 9 shows the normalized difference to reference
simulations. For all units and time quanta smaller than
10 ps, the difference is below 0.3% when rounding to the
nearest time interval and grows with coarser quantization.
The choice of parameter rounding could be used to force a
specific analysis behavior, like systematic over- or underes-
timation of error metrics, but this aspect is out of scope

of this paper and nearest time interval rounding will be
assumed in the following evaluation, which gave the overall
smallest differences to the simulation reference.

Finally, instrumentation-inherent sources for deviations
to SDF simulation results should be mentioned. The ad-
dress generator used for selecting the propagation delay is
working with a fixed prioritization scheme. When multiple
input transitions occur at the same time, the parameter of
the higher-priority input is selected, independent from the
actual delay values. Furthermore, if the counter is active,
it is not restarted by following input transitions, even if
a faster propagation would be introduced. These implica-
tions prevent the timing emulation from being absolutely
equivalent to the simulation reference. In favor of a smaller
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Figure 9: Mean emulation error magnitude difference to SDF simulation for a 16-bit adder (top row), 16-bit multiplier (center row) and 16-bit
divider (bottom row) when rounding timing parameters for lower precision time quanta. From left to right: Rounding to nearest quantized step,
flooring, and ceiling. 100 normalized percent correspond to the maximum addition output value of (217 − 2), to the maximum multiplication
output value of (216 − 1)2 for the multiplier or to the maximum division output value of (216 − 1) for the divider.

FPGA resource overhead, the additional treatment of these
cases was relinquished.

4.3. Analysis of Critical Path

The bottom row of Fig. 7 shows the required amount
of cell instrumentation for analysis of a certain stochastic
regime, given by the minimum system clock period ap-
plied to the designs. Since only timing-violated paths may
contribute to the occurrence of stochastic errors, all gates
that exclusively form shorter paths can be omitted from
the instrumentation. The instrumentation characteristic
depends on the netlist architecture and the distribution of
path lengths in the design.

When the operation frequency of an error-free circuit

is progressively increased, the system will eventually expe-
rience timing violations of one or more timing paths at the
critical clock frequency. This frequency denotes the entry
point of the stochastic regime. Any frequency overscal-
ing (FOS) with respect to the critical operation frequency
increases the number of timing path violations and the
amount of logic gates affected by violated paths. In Ta-
ble 2, the percentage of instrumented gates for stochastic
FOS of up to 180% of the critical operation frequency is
denoted for the profiled 16-bit adder, multiplier and divider
gate-level netlists. A FOS value of 100% is defined as a
timing violation of the critical path only. For any system,
the total number of instrumented gates at the critical oper-
ation frequency gives a hint about the length of the critical
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Table 2: Required Percentage of Netlist Instrumentation for Maximum
Stochastic Frequency Overscaling Conditions

Design
Max. Percentage of FOS

100 110 120 130 140 160 180

ADD 16 26% 32% 36% 39% 42% 45% 48%

MUL 16 69% 78% 80% 82% 84% 86% 88%

DIV 16 50% 96% 96% 96% 96% 97% 97%

path within that particular circuit.
For the ripple-carry arithmetic units in this analysis,

the overall critical path and therefore the base fraction
of instrumented gates is determined by the longest carry
propagation chain through all basic building blocks of the
design. In the analyzed ripple-carry adder design, the
initial instrumentation requirement is 26% of the total
netlist. The instrumentation effort increases linearly with
increasing FOS as sum bit outputs and operand inputs
have to be instrumented. For a maximum of 180% FOS,
only 48% of the netlist are instrumented, saving FPGA
resources compared to a full instrumentation.

In the ripple-carry array multiplier basic cell, about 69%
initial instrumentation effort are required for the critical
path, which is significantly more than for the adder design.
For the non-restoring divider array, an initial instrumenta-
tion estimation of 50% is obtained, but the instrumentation
amount increases quickly and reaches 96% of the netlist for
only 110% FOS. Therefore, it is concluded that the FPGA
resource saving capability of path-selected instrumentation
is heavily influenced by the netlist design and more efficient
for simple one-dimensional carry propagation in adders
than for two-dimensional multiplier and divider arrays.

4.4. Emulation vs. Simulation Speed-Up

In the top row of Fig. 10, the required time for simulat-
ing and emulating 105 arithmetic operations is depicted as
a function of the design size in standard cells. Additionally,
the influence of timing resolution reduction is evaluated by
increasing the time quantum from 1 to 10 and 100 ps for
emulation and switching the minimum time step to 10 and
100 ps for SDF-supported simulation.

For a specific timing resolution, the elapsed time in-
creases with the design size for SDF simulations. The
FLINT+ emulation speed only depends on the reference
clock and the time quantum associated with it. Simulta-
neous transitions occur in parallel as the whole circuit is
instrumented and mapped onto the FPGA, so the design
size does not directly affect the emulation duration. An
indirect influence is observable as the maximum achievable
reference clock frequency is decreased with larger designs
due to FPGA net routing delays. The initial delay param-
eter configuration effort is also netlist-dependent because
of a variable amount of delay parameters. But with a
maximum configuration time below 10 ms for the profiled
designs, it is negligible compared to the operation execution
duration of up to 500 seconds. In contrast, event-based
logic simulators process transition events sequentially, so

more transitions in larger netlists require more processing
time.

When the time quantum is increased by a factor of 10,
the emulation time is reduced by a factor of 10, since a
larger time interval is processed per reference clock cycle.
For SDF simulations, increasing the minimum time step
has less impact, because the number of occurring logic
transition events is not reduced. This gives rise to a large
emulation speed-up when high timing accuracies are not
necessary, e.g., for the 20-bit multiplier, an acceleration
by a factor of 5 for 1 ps, 57 for 10 ps and 519 for 100 ps
resolution is achieved. With larger time quanta and speed-
up, the emulation accuracy decreases, as it is annotated
in the bottom row of Fig. 10. For smaller designs, the
speed-up advantage is reduced, emphasizing the emulation
framework benefits for more complex designs.

It must be pointed out that the maximum frequency for
the emulation reference clock is mainly target architecture-
dependent, i.e., netlist-dependent due to FPGA net routing
delays. Table 3 shows the maximum reference clock fre-
quency for the evaluated designs, ranging from 500 MHz
for the smallest adder designs to 125 MHz for the 22-bit
multiplier, which therefore shows smaller speed-up factors
than the 20-bit multiplier.

In general, a higher reference clock frequency and a
higher emulation speed-up can be achieved by reducing the
instrumentation overhead and simplifying the place-and-
route process. Besides coarser timing quantization and a
smaller delay parameter bitwidth, critical path selection
is employed to save FPGA resources. For example, if
the maximum stochastic operation range is reduced from
full instrumentation to 110% FOS, the reference clock
frequency of the 22-bit multiplier with 10 ps quantization
resolution is increased from 278 to 400 MHz. This results
in an additional speed-up of 1.4, depicted as split line
branches in Fig. 10. When a limited timing resolution of
100 ps with a small stochastic analysis regime of 110% FOS
is sufficient, very large speed-up factors of up to 1400 for
the 896-bit adder are possible.

4.5. Resource Overhead

FPGA resource counts are collected and depicted in
Fig. 11. These numbers represent the LUT and register
utilization for the instrumented netlists on the Virtex-6
FPGA device only and do not contain overhead introduced
by the UEMU framework. Every instrumented gate in
the original design netlist is replaced by a larger cell with
injected timing circuitry. Thus, resource overhead is gen-
erated compared to the synthesis results for the original
uninstrumented netlist.

As it can be deduced from Fig. 11, the resource re-
quirements for registers and LUTs increase linearly with
the amount of instrumented standard cells. A resource
overhead factor of approximately 30 to 40 is introduced
when compared to the number of standard cells at 1 ps
timing parameter resolution. When sacrificing timing emu-
lation accuracy by choosing less timing resolution, the
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Figure 10: Comparison of elapsed time (top row) and speed-up factor (bottom row) for instrumented netlist emulation and SDF timing
simulation. The evaluated adder bitwidths are 8, 16, 24, 32, 64, 128, 256, 384, 512, 640, 768 and 896 bits. Multipliers are evaluated for
bitwidths of 8, 16, 18, 20, 22 and 24 bits. Dividers are evaluated for bitwidths of 8, 16, 18, 20 and 22 bits. All values are generated for 105

operations and the maximum FLINT+ reference clock frequency for each netlist. The system clock period is set to 90 ns for all adders, 270 ns
for all multipliers and 1400 ns for all dividers. The influence of the quantization resolution is denoted as full (1 ps), dashed (10 ps) and dotted
(100 ps) lines for the elapsed time. For partial instrumentation applying path instrumentation selection, the elapsed times and speed-up factors
for 110%, 120%, 130%, 140%, 160% and 180% maximum FOS are depicted as split branches. Resolution-dependent accuracy comparisons to
SDF simulation with 1 ps timing resolution are maximum values for 16-bit adder, multiplier and divider from Sections 4.1 and 4.2 when timing
parameter values are rounded to the nearest quantized interval.

delay parameter bitwidth can be reduced, resulting in a
resource reduction of about 30 % for 100 ps parameters.
If the analysis is constrained to a minimum system clock
period, i.e., a limited stochastic operation regime, a full
netlist instrumentation is not necessary. By applying a
partial instrumentation using the iterative critical path
selection feature of the framework, the resource require-
ment can be reduced to a minimum of about 30% of the
full instrumentation according to Table 2. Furthermore,
the reduced overhead allows larger designs to be analyzed,
e.g., for the 512 to 896-bit adders, a fully-instrumented
FPGA bitstream generation is not possible for the Virtex-6
XC6VLX240T-1 FPGA device (denoted by ’-’ in Table 3).
By using partial instrumentation, these units become ac-
cessible for a certain stochastic operation range.

In cases where the FPGA resource overhead constrains
the applicability of the framework, the toolchain also offers
a hierarchical instrumentation mechanism. This mecha-
nism applies instrumentation only to a selection of netlist
sub-modules and keeps the original gate-level description
for the rest. The functional behavior of the whole circuit is
preserved, while the instrumented modules are additionally

emulating timing behavior. For example, in pipelined mi-
croprocessors, it could be sufficient to just analyze specific
datapath units of interest. In such cases, the proposed
emulation-based timing analysis framework is applicable
by using only a fraction of the FPGA resources needed for
a complete instrumentation. Furthermore, for circuits com-
posed of several similar arithmetic blocks, e.g., dedicated
image convolution accelerators, time-domain multiplexing
techniques may be used for timing emulation, where only
one arithmetic block is instrumented and sequentially used
for analysis of the complete block-based system. However,
this aspect is out of scope of this paper, since the utilization
ability of such methods and the expected effective speed-up
compared to simulating the complete system is completely
application-dependent.

5. Case Study: Stochastic CORDIC Unit

In this case study, the accuracy-performance design
space of a CORDIC hardware implementation is explored
within the stochastic operation regime. In [25], approxi-
mate adders are used in a CORDIC hardware unit to intro-

12



0 2 000 4 000 6 000 8 000

0

20 000

40 000

60 000

80 000

100 000

ADD 128

ADD 384
ADD 640

no instrumentation

#
F
F

Adder

0 1 000 2 000 3 000 4 000

0

20 000

40 000

60 000

80 000

100 000

MUL 8

MUL 16

MUL 20

no instrumentation

Multiplier

500 1 000 1 500 2 000 2 500 3 000

0

20 000

40 000

60 000

80 000

100 000

DIV 8

DIV 16

DIV 20

no instrumentation

Divider

0 2 000 4 000 6 000 8 000

0

20 000

40 000

60 000

80 000

ADD 128

ADD 384

ADD 640

no instrumentation

# Standard cells

#
L
U
T

0 1 000 2 000 3 000 4 000

0

20 000

40 000

60 000

80 000

MUL 8

MUL 16

MUL 20

no instrumentation

# Standard cells

500 1 000 1 500 2 000 2 500 3 000

0

20 000

40 000

60 000

80 000

DIV 8

DIV 16

DIV 20

no instrumentation

# Standard cells

Full Instr. 180% FOS 160% FOS 140% FOS 120% FOS

Figure 11: Resource overhead in FFs (top row) and LUTs (bottom row) of instrumented netlists synthesized for a Virtex-6 FPGA device as a
function of the maximum frequency overscaling operation regime. The evaluated adder bitwidths are 8, 16, 24, 32, 64, 128, 256, 384, 512, 640,
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For lower precision time quanta, the delay parameter bitwidth and thus the resource overhead is reduced. The influence of the quantization
resolution is denoted as full (1 ps), dashed (10 ps) and dotted (100 ps) lines.

duce computational imprecision in the iterative nature of
the CORDIC algorithm. The authors of this paper explore
the accuracy-efficiency design space in terms of a trade-off
between the computational mean absolute error, critical
path delay and energy dissipation for different approximate
adder configurations. Contrary to the Approximate Com-
puting approach of designing imprecise hardware without
any timing violations, the proposed FLINT+ framework
assists designers to evaluate Stochastic Computing meth-
ods by violating the circuit timing of either precise or
approximate arithmetic units within a reasonable amount
of analysis time.

CORDIC [26] is an algorithm to compute a large vari-
ety of elementary functions. By applying iterative vector
coordinate rotations with a defined set of rotation condi-
tions, only addition and bit shift operations are required
to calculate more complex functions. Fig. 12 shows a block
diagram of the 32-bit fixed-point CORDIC hardware used
in this case study. ASIC gate-level netlists of precise and
approximate CORDIC units are synthesized from a struc-
tural VHDL description using a 1 µm high-temperature
SOI CMOS technology [22].

The iterative coordinate rotation can be controlled to
converge to different mathematical functions by selecting a

>> i

Register

+/- +/- +/-

>> i

RegisterRegister

Rotation 

ROM

X_O Y_O Z_O

Z_IX_IY_I

Figure 12: Exemplary CORDIC hardware implementation. X I, Y I

and Z I are the preset inputs for the vector coordinates X and Y
and the rotation angle Z. X O, Y O and Z O are the corresponding
outputs for each iteration. The three addition-subtraction units are
either precise or approximate adders, while subtraction is obtained
by performing a bitwise invert operation of the second operand and
setting the carry-in bit of the adder.

specific operation mode and a parameter ROM table for
stepping the rotation angle Z. Since imprecise calculations
may result in different convergence properties for these
modes, sine calculations (rotation mode, circular step ta-
ble), square root calculations (vectoring mode, hyperbolic
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Table 3: Maximum FPGA Reference Clock Frequencies in MHz
After Place-and-Route as a Function of the Netlist Design, Quanti-
zation Resolution and Amount of Frequency Overscaling for Partial
Instrumentation

Design Res.
Max. Percentage of FOS

110 120 130 140 160 180 Full

ADD 16

100 ps 500 500 500 500 500 500 500
10 ps 500 500 500 500 500 500 500
1 ps 500 500 476 476 476 476 476

ADD 64

100 ps 500 500 500 500 500 500 476
10 ps 476 476 476 476 476 476 476
1 ps 476 476 476 476 476 476 476

ADD 128

100 ps 476 476 476 476 476 476 455
10 ps 476 476 476 476 476 455 455
1 ps 455 455 455 455 455 455 455

ADD 256

100 ps 476 476 476 476 476 455 455
10 ps 476 476 455 455 455 455 455
1 ps 455 455 455 455 455 455 455

ADD 384

100 ps 476 476 476 476 476 455 455
10 ps 455 455 455 455 455 435 345
1 ps 455 455 455 455 455 435 -

ADD 512

100 ps 476 476 476 476 476 455 -
10 ps 455 455 455 455 455 435 -
1 ps 455 455 455 455 435 435 -

ADD 640

100 ps 476 476 476 476 417 417 -
10 ps 435 435 435 435 417 345 -
1 ps 435 435 417 400 333 313 -

ADD 768

100 ps 455 455 455 417 417 370 -
10 ps 435 435 385 323 - - -
1 ps 435 435 - 323 - - -

ADD 896

100 ps 417 417 417 370 303 303 -
10 ps 370 370 222 - - - -
1 ps 263 143 - - - - -

MUL 16

100 ps 455 455 455 455 455 455 455
10 ps 455 435 435 435 435 435 435
1 ps 435 435 435 435 435 435 435

MUL 18

100 ps 455 455 455 455 455 455 455
10 ps 455 435 435 435 435 435 435
1 ps 417 417 385 385 385 385 370

MUL 20

100 ps 417 417 417 417 417 400 400
10 ps 400 400 400 400 400 400 400
1 ps 385 345 345 345 345 345 345

MUL 22

100 ps 400 370 357 357 357 357 357
10 ps 400 333 333 286 278 278 278
1 ps 286 189 189 125 - - -

MUL 24

100 ps 370 370 357 313 313 313 164
10 ps 303 - - - - - -
1 ps - - - - - - -

MUL 26

100 ps 323 204 192 182 - - -
10 ps - - - - - - -
1 ps - - - - - - -

DIV 16

100 ps 455 435 435 435 435 435 435
10 ps 435 435 435 435 435 435 435
1 ps 417 417 417 417 417 417 417

DIV 18

100 ps 435 435 435 435 435 435 435
10 ps 417 417 417 417 417 417 417
1 ps 357 357 345 345 345 345 345

DIV 20

100 ps 417 417 385 385 385 385 385
10 ps 333 333 333 333 333 333 333
1 ps 270 244 - - - - -

DIV 22

100 ps 323 323 323 323 323 323 323
10 ps 172 - - - - - -
1 ps - - - - - - -

step table) and exponential calculations (rotation mode,
hyperbolic step table) are selected for the case study to
cover typical functions in different operation modes. The
operation arguments are given as 1◦ to 90◦ in steps of 1◦

for the sine function, 0.05 to 0.74 in steps of 0.01 for the
square root function, and −π

4 to π
4 in steps of 0.01 for the

exponential function, respectively.
In this case study, the proposed stochastic CORDIC
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Figure 13: Block diagram of a ETA2-M approximate adder with a
generator blocksize of 4 bits and a carry generator extension of two
additional blocks. Following the name convention of this paper, this
unit is called ETA4-2. The critical path of the design is depicted as
a dashed red line.

unit is implemented either with precise Ripple-Carry Adder
(RCA) or approximate Modified Error-Tolerant Adder Type 2
(ETA2-M) [27] adders. The ETA2-M approximate adder
is segmented into equally-sized sum and carry generator
blocks, as depicted in Fig. 13. Then, RCA adders are used
for the sum generators and a ripple-carry chain without
sum bit generation is used for the carry generators. Since
the carry propagation chain is interrupted, approximation
errors occur when a carry bit has to be propagated across
block boundaries to obtain a correct carry input for a sum
generator. To reduce the error magnitude of the ETA2-M
adder, several carry generators can form a longer carry
chain for the most significant sum bits. In the following,
a name convention of the format ETAa-b is applied to
denote a generator blocksize of a bits and an additional
extension of b carry generator blocks to obtain the carry
input for the most significant sum bits. The ETA2-M adder
produces frequent errors with small magnitude (FSM) and
is therefore suitable for approximations of X and Y vector
coordinates as well as of the rotation angle Z, because the
iteration convergence of the algorithm is not disturbed by
large error magnitudes [25].

5.1. Quality-Performance-Area Exploration

The goal of this case study is to find Pareto-optimal
CORDIC configurations that offer high computational ac-
curacy and performance. As accuracy metric, the Signal-
to-Noise Ratio (SNR) compared to the double-precision
floating-point MATLAB implementation of elementary
functions is evaluated. The system clock period for one
CORDIC iteration is defined as a performance metric,
where smaller values result in a higher performance.

When Stochastic Computing methods are not applied,
the only possibility to improve the processing performance
is to reduce the critical path delay of the CORDIC unit.
The ETA2-M approximate adder trades off accuracy for
a smaller delay by interrupting carry propagation. When
a RCA is used for X, Y and Z adders, the most critical
paths are located in the X and Y branch through the
shifter, adder and register input multiplexer. By inserting
a ETA2-M architecture for X and Y adder, the critical
path is moved to the Z branch of the CORDIC unit and
can be reduced by inserting the same ETA2-M architecture
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for the Z adder. Then, the critical path is moved back to
the X and Y branches. By applying the described scheme,
a successive critical path delay reduction is achieved and
shown in Table 4, while the SNR is reduced and the circuit
area increases due to additional carry generators of the
ETA2-M architecture. In the following, each configuration
of a CORDIC unit is denoted as adder xy & adder z, as the
same adder architecture is used for the vector coordinates X
and Y. For the rotation angle Z, the adder unit may differ.
It has to be pointed out that more ETA2-M architectures
or other approximate adder designs can be evaluated in
larger analysis campaigns, however, this aspect is out of
scope of this paper.

The FLINT+ framework is then applied to explore the
stochastic operation regime at environment temperature
corner cases of 250 ◦C and 175 ◦C. The top and third row
of Fig. 14 illustrate the analysis results. The stochastic
regime of each adder unit is denoted by gray dashed lines
in the plots on the number of instrumented cells (second
and bottom row), where the upper limit is the critical path
and the lower limit is the lowest clock period where at least
one sum bit of each X, Y and Z adder is guaranteed to
be still correct. For the sine, square root and exponential
functions, the average SNR as a function of the clock period
indicates that the ETA2-M configurations do not always
outperform the RCA for a stochastic performance gain.
For example, sine calculations reach the highest average
SNR with an ordinary RCA for clock periods above 300 ns
at 250 ◦C or 200 ns at 175 ◦C, although the critical path of
the RCA is already violated. Below these clock periods,
the SNR of the RCA drops significantly and the ETA8-1
and ETA8-0-based CORDIC configuration achieve a higher
sine accuracy in the stochastic regime. Similar observations
can be made for the exponential calculations.

For square root operations, the SNR-performance Pa-
reto front (the upper slope of all curves) has a different
shape because in vectoring mode, the sign bits of X and Y
are responsible for iteration control instead of the rotation
angle Z. A different iteration process therefore results in
different error characteristics. When operated at 250 ◦C,
the RCA has the highest SNR above a clock period of
300 ns. Below that, when using a ETA8-1 and ETA8-0
CORDIC configuration, higher average accuracy can be
reached. At 175 ◦C, there is a small interval between 120
and 150 ns for which the ETA4-1 & ETA8-0 configuration
has the highest accuracy. Summarizing the observations,
the stochastic accuracy-performance design space offers
trade-off potential even for a small case study.

Fig. 15 illustrates the normalized mean absolute error
difference when the timing resolution of the emulation is
reduced to 10 or 100 ps. A reasonable system clock period
between 436 and 142 ns is assumed, which corresponds to
the range from the critical path and thus the first path
violation for the RCA & RCA CORDIC configuration down
to the violation of all paths within at least one of the X,
Y and Z adder. The deviations are below 1.5% for 10 ps
resolution and below 4% for 100 ps resolution for most of

Table 4: Circuit Area, Critical Path (250 ◦C) and Non-Stochastic
Average SNR for ETA CORDIC Configurations

CORDIC Config. Area Crit. Path Non-Stoch. SNR (dB)

X,Y & Z Adder (mm2) (ns) SINE SQRT EXP

RCA & RCA 1.978 436 168 147 168

ETA8-1 & RCA 2.086 375 100 109 121

ETA8-1 & ETA8-1 2.128 347 97 109 115

ETA8-0 & ETA8-1 2.179 307 96 83 114

ETA8-0 & ETA8-0 2.189 271 74 83 75

ETA4-1 & ETA8-0 2.229 254 55 56 55

the clock periods. If the analysis accuracy is sufficient,
using a coarser timing quantization enables high speed-up
factors for large exploration scenarios.

5.2. Emulation vs. Simulation Speed-Up

In Fig. 16, the elapsed time for FLINT+ emulation and
SDF timing simulation as well as the speed-up factor is de-
picted for the analysis of all evaluated CORDIC operations
for one specific system clock period of 250 ns. Since the
design size of the different CORDIC configurations only
varies within a small range of 1533 to 1791 standard cells,
the FPGA routing complexity and therefore the maximum
reference clock frequency of about 400 MHz are comparable
for all evaluated CORDIC configuration designs.

By reducing the timing resolution to 100 ps or perform-
ing a partial netlist instrumentation with the critical path
selection algorihm for a maximum stochastic condition of
120% FOS, the reference clock frequency can be increased
to 455 MHz. When a reference clock quantization inter-
val of 100 ps is used, a maximum speed-up factor of 476
is obtained for the ETA8-1 & ETA8-1 CORDIC configu-
ration. If a large stochastic timing analysis campaign of
about six months in SDF timing simulations is considered,
this factor scales to about half a day of FLINT+ timing
analysis, massively accelerating analysis tasks of stochastic
hardware designers when a reduced timing resolution is
sufficient.

5.3. FPGA Resources

In Fig. 17, the required FPGA resources for timing
emulation are illustrated. With a maximum amount of
72 000 flip-flops and 60 000 LUTs, all evaluated designs fit
into the FPGA device at full timing resolution of 1 ps and a
complete netlist instrumentation. Nevertheless, the critical
path selection is an effective way to reduce the resource
overhead for CORDIC designs. Because the reasonable
stochastic regime for the adders within the CORDIC unit
does not cover the full clock period range (second and
bottom row in Fig. 14), 7% to 9% of the ASIC netlist
gates never require instrumentation because paths travers-
ing them will be violated below the border of stochastic
adder operation (142 ns at 250 ◦C). Thus, critical path
selection can be universally applied for all configurations to
save unnecessary instrumentation amount if the analyzed
stochastic regime is limited by a minimum clock period.
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Figure 14: Top row: Average SNR of sine, square root and exponential functions for CORDIC calculations in the stochastic regime for a
250 ◦C temperature corner case. The adder configurations are denoted as follows: adder xy & adder z. Second row: Number of required
instrumented gates as a function of the system clock period for a 250 ◦C temperature corner case. Third row: Average SNR of sine, square
root and exponential functions for CORDIC calculations in the stochastic regime for a 175 ◦C temperature corner case. Bottom row: Number
of required instrumented gates as a function of the system clock period for a 175 ◦C temperature corner case.
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Finally, it has to be pointed out that the stochastic
regime scales approximately linear with the temperature
corner case. For example, the considered clock period range
for the RCA & RCA CORDIC configuration covers 436 ns
down to 142 ns at 250 ◦C, which corresponds to a maximum
307% of frequency overscaling compared to the critical clock
frequency. At 175 ◦C, the reasonable clock period covers a
range of 265 ns down to 98 ns until all paths within one of
the adders are violated, which corresponds to 270% FOS.
Furthermore, the plots of required instrumented gates in
Fig. 14 follow the same shape for 250 ◦C and 175 ◦C, so a
single timing-instrumented netlist for a certain stochastic
range at the worst temperature corner case can also reflect
a comparable analysis range at other temperature corner
cases. Thus, when applying partial instrumentation by
critical path selection, a single runtime-configurable FPGA
bitstream as provided by the FLINT+ framework can
still be used to estimate the stochastic behavior in other
temperature corner cases than the worst case for which the
necessary gate instrumentation was derived prior to FPGA
bitstream generation.

6. Conclusion

In this paper, a FPGA-based timing analysis frame-
work is presented. A gate-level netlist instrumentation

approach of emulating gate propagation delays in hardware
via time quantization and reference clock cycle counters is
implemented and enhanced by a scan chain-like runtime
configuration mechanism for the delay parameters. This
feature supports speeding-up timing analysis campaigns
for Stochastic Computing at hundreds to thousands of en-
vironmental corner case combinations without the need to
generate a FPGA bitstream for each corner case of one
specific ASIC design. Furthermore, a critical path selec-
tion algorithm is integrated into the framework toolflow
to select only timing-relevant gates for the instrumenta-
tion of a limited, user-defined stochastic analysis regime.
By omitting the instrumentation model from gates that
will not contribute to stochastic errors induced by path
timing violations, the FPGA resource overhead due to
instrumentation is reduced.

The choice of timing resolution is an important factor
for the trade-off between emulation speed-up and the ac-
curacy of the full-circuit timing emulation compared to
logic simulations. For full timing instrumentation of pro-
filed ripple carry adders, ripple carry array multipliers and
non-restoring array dividers, speed-up factors of up to 57
are obtained for a resolution of 10 ps, while the mean error
magnitude of the analyzed stochastic errors deviates by a
maximum of 0.3 % from a SDF timing simulation at a 1 ps
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Figure 16: Comparison of elapsed time (top plot) and speed-up factor
(bottom plot) for instrumented netlist emulation and SDF timing
simulation. The system clock period is set to 250 ns for all CORDIC
units and the timing corner case for 250 ◦C is used. The influence of
the quantization resolution is denoted as full (1 ps), dashed (10 ps) and
dotted (100 ps) lines for the elapsed time. For partial instrumentation
applying path instrumentation selection, the elapsed times and speed-
up factors for 110%, 120%, 130%, 140%, 160% and 180% maximum
FOS are depicted as split branches.

timescale. If the quantization resolution is set to 100 ps,
speed-up factors of up to 519 are obtained, while the mean
error magnitude deviates by a maximum of 0.8 %. By using
partial netlist instrumentation and the proposed critical
path selection algorithm, speed-up factors of up to 1400
are reached at the trade-off of a reduced analysis range for
stochastic operation.

By applying the proposed FLINT+ framework to an
exemplary CORDIC quality-performance design space ex-
ploration, an overall speed-up factor of up to 48 for 10 ps
and up to 476 for 100 ps quantization resolution is achieved,
while the maximum mean error magnitude to timing simu-
lations does not exceed 1.5 % and 4 %, respectively. This
allows hardware designers to significantly shorten exhaus-
tive campaign runtimes from several months to one day
with sufficient accuracy to rate the effectiveness of the
analyzed stochastic circuit techniques.
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