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Abstract—Numerous approximate adders have been proposed
in the literature in response to the languishing benefits of
technology scaling. However, they have been obtained with an ad-
hoc and non-systematic methodology which does not fully exploit
the design space possibilities. This work provides a conceptual
framework for the systematic design of approximate adders
including hybrid and non-equally segmented approaches as well
as more robust error metrics. The framework discriminates the
scenarios where approximate processing does not provide signif-
icant benefits from those where it does; in this later case, it aids
to obtain optimal configurations for the adders. Experimental
results with a commercial technology assesses the significant
improvements of our systematic approach. Furthermore, a case
study with a processor enhanced with an approximate accelerator
highlights the usability of the methods.

Index Terms—Approximate adders, error metrics, computer
vision, generic template, automatic design framework.

I. INTRODUCTION

INCREASING vulnerability of computing systems to errors
in underlying circuits is a growing concern nowadays. As

device sizes shrink, variability in physical circuit characteristics
is increasing as a result of manufacturing challenges at the
device level. Traditionally, performance and energy penalties
are paid to ensure that all devices work correctly under all
possible conditions. Accordingly, achieving deterministic be-
havior becomes increasingly expensive, as variability increases.
In response to the languishing benefits of technology scaling,
rather than hiding variations under expensive guard-bands,
designers have begun to relax traditional correctness constraints
and deliberately expose hardware variability to higher levels
of the computing stack [1].

As one of the most promising energy-efficient paradigms, ap-
proximate computing increases energy efficiency that leverages
application-level tolerance to few errors in many applications,
including image processing, multimedia applications, and ma-
chine learning. Approximate computing, a promising technique
to reduce power, area and delay in VLSI design, approximates
a system by redesigning its logic circuit. It exploits the gap
between the level of accuracy required by the applications and
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that provided by the computing system, for achieving diverse
optimizations [2], [3].

The researchers in the field of approximate computing have
paid special attention to adders, one of the key components
of arithmetic circuits. In fact, a surprisingly large number
of approximate adders [4]–[11] have been proposed in the
literature: segmented adders where an n-bit adder is divided
into k-bit sub-adders [4]–[6]; carry select adders in which
multiple sub-modules are used [7], [8]; approximate full adders
where the full adder is approximated [10], [11]; and speculative
adders which are built upon the observation that the critical path
is rarely activated in traditional adders [12]–[14]. The current
situation is such that even a fair comparison of approximate
adders is a challenging endeavor [15], [16].

A closer investigation into the variety of approximate adders
(and in general, approximate units) shows that the current
approaches use two philosophies for the error: 1) small errors
or 2) unlikely errors. In the first philosophy, the errors of the
approximate unit are engineered to be small in magnitude, even
if they are frequent. The rationale is that those errors are masked
by the intrinsic truncation and noise error of the system, and
therefore they do not degrade considerably the quality of the
application. Examples of this philosophy are the Lower-part OR
Adder (LOA) [10] and the Optimized Lower-part Constat-OR
Adder (OLOCA) [17]. In the second philosophy, the errors are
engineered to appear infrequently, even if they are large when
they appear. The rationale is that the application can overcome
errors if they are sporadic. Examples of this philosophy are
the Almost Correct Adder (ACA) [4], the Generic Accuracy
Configurable Adder (GeAr) [9], the Error Tolerant Adder
(ETAII) [6] and the Equal Segmentation Adder (ESA) [5].
Furthermore, although all the architectures are conceptually
different, they share a common characteristic: they have been
obtained with an ad-hoc and non-systematic methodology. A
remarkable exception is, however, the GeAr Adder that uses the
idea of a template [9], but it is not optimal. In real applications,
hybrid solutions including both philosophies are desirable and
even required; however, they cannot be obtained with current
approaches. Therefore, an integrated CAD framework, able to
model, analyze, and optimize all the previous architectures and
error philosophies, is urgently required.

A key problem when considering simultaneously the two
philosophies is the quantification of the errors. The authors
working with the small errors philosophy tend to prefer
error metrics as the standard deviation, or the mean average
error that measure the average magnitude of the errors. This
metric, however, strongly penalizes large infrequent errors. The
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authors working with the infrequent error philosophy tend to
favor metrics as the average number of errors which quantify
the error probability; however, this metric strongly penalizes
architectures with small errors. In a real scenario, the two
effects have to be considered in a single metric, but it is not
possible with the current approaches.

The selection of an approximate architecture is strongly
influenced by the timing constraints of the hardware [16].
The constraints determine the internal structure of the unit
(sequential structure with linear cost, parallel-prefix structure
with a logarithmic cost, etc.), which determines the reduction
in cost achieved by the approximate units. With relaxed timing
constraints, an exact adder is implemented with a ripple-
carry structure and an ESA almost decreases the delay by
a factor of two. With more stringent timing constraints, an
exact adder is implemented with a parallel-prefix architecture,
where the delay increases as dlog2(n)e and the use of an
ESA is just marginally reducing the delay. In this case, non-
equally segmented sub-adders may be preferable. The effects
of the internal adder architecture have been studied in [16]; it
illustrates the potentials for non-equally segmented approximate
adders which are currently disregarded. A unified description
for approximate adders is still an open problem.

The goal of this work is to provide a conceptual framework
for the systematic design of approximate adders, including
hybrid and non-equally segmented approaches, as well as more
robust error metrics. It is organized in five main sections. Firstly,
in Section II, we extend the current error metrics to system-
atically analyze approximate units; secondly, in Section III,
we develop a template to design and analyze approximate
adders, including the small-errors and the infrequent-errors
philosophies; it includes a detailed mathematical analysis
of errors. Afterwards, Section IV describes how our design
framework automatically chooses best configurations of the
proposed template for given application constraints. For the
validation, we provide two contributions: First, we present an
experimental evaluation using a commercial CMOS technology
in Section V; secondly, we present a case study with a MIPS
processor ensued with an approximate accelerator in Section VI,
to highlight the practical relevance of the proposed approaches.
Finally, Section VII concludes the paper.

II. METRICS

The error is defined as the difference between approximate
and accurate output results of the adder, i.e., ε = Ỹ − Y ,
where Ỹ is the approximate (erroneous) output of the adder
and Y is the accurate result. It is a random variable that can
be characterized by its probability density function. However,
from the perspective of an automated design framework, it is
more convenient to use an error metric (a single number) to
quantify the importance of the error. Several metrics have been
proposed; among them, the most common ones are the Average
Error (µ), the average number of errors (PE), the Standard
Deviation (STD or σ), the Mean Squared Error (MSE) and
the Mean Absolute Error (MAE). The authors in [18] defined
the Error Distance and the Mean Error Distance (MED) to
evaluate the arithmetic performance of approximate adders.
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Fig. 1. Error histograms of a low-resolution input, a high-resolution input
and an ANT output.

These metrics are actually the absolute error and the MAE,
respectively. References [19], [20] use MED and error rate
(similar to PE), while references [15], [21], [22] use relative
error metrics. In summary, the most common metrics are:

PE = E
[
δ(ε)

]
=
∑
j

δ(εj)Pr[εj ] , (1)

σ =
√
E
[
(ε− µ)2

]
=

√∑
j

(εj − µ)2Pr[εj ] , (2)

MSE = E
[
ε2
]
= µ2 + σ2 , (3)

MAE = E
[
|ε|
]
=
∑
j

|εj |Pr[εj ] , (4)

As mentioned in the introduction, PE favors the infrequent
error philosophy, while STD and MSE favor the small error
philosophy. MAE is more robust than MSE to the presence of
large errors and it is commonly used as a compromise. However,
it is insufficient. Let us consider a typical stochastic approach
as the Algorithmic-Noise-Tolerant (ANT) approach [23]. In
ANT, two versions of an algorithm are computed; one with a
low-cost and low-resolution unit and another one with a high-
resolution approximate-processing unit. Then, the two outputs
are compared; if the difference is small, the approximate-
processing output is chosen, otherwise the low-resolution one
is chosen. After this selection process, the quality of the system
is notably improved. An example is shown in Fig. 1, where
the low-resolution signal uses 5 effective bits and the high-
resolution signal is generated with a hybrid adder. The error
histogram of the ANT output shows the quality of the resulting
signal. Beside the simplicity of this example, none of the
current metrics can be reliably used to quantify the error-cost
of the high-resolution approximate-processing needed by ANT.
To illustrate this fact, Table I reports the error metrics (PE
and MSE) of the signal produced by three different adders as

Table I
ERROR METRICS FOR APPROXIAMTE ADDERS AND RESULTING OUTPUT

QUALITY AFTER ANT PROCESSING

ANT input ANT output
Adder MSE PE MSE
ESA-4 10.9545 0.4688 7.4330
ETAII-3 14.9666 0.0547 0.8101
Hybrid 19.6405 0.2676 0.7539
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well as the final signal quality measured as the MSE at the
output of the ANT process. Analyzing only the MSE, ESA-4
should be the best adder, while analyzing the PE, ETAII-3 is
preferable. In fact, a hybrid adder, whose MSE and PE are
worse than the previous examples, provides the best solution.
Accordingly, current metrics are misleading.

The key problem is that the current metrics do not capture the
different behaviors of small and large errors. Low-magnitude
errors get added to the final output and can be quantified with
the MSE or STD; high-magnitude errors are detected by ANT
and replaced by the low-resolution version of the algorithm.
Thus, they contribute with a factor dependent on the error
probability (PE) but relatively independent of the actual error
magnitude. To palliate the lack of expressiveness of current
metrics, we propose a new parameterizable metric that captures
the requirements of stochastic applications, the Saturated Mean
Squared Error (SMSEτ ). Mathematically, it is defined as:

SMSEτ = E
[
min(τ, |ε|)2

]
(5)

The parameter τ controls the behavior of the metric; large
values of τ produce a cost similar to the MSE, while small
values produce a cost similar to PE. As shown with more
details in the experimental results, the new metric captures
more precisely the error cost and can be used to explore
different approximate units.

III. HARDWARE MODELING

As previously mentioned, the existing approximate adders
have been proposed based on two major philosophies: 1)
Infrequent errors: Segmented adders where an n-bit adder
is divided into k-bit sub-adders [4]–[6]. This class of adders
mostly produce big errors with low probability of happening.
2) Small errors: Approximate full adders where the full adder
is approximated [10], [11]. This group of adders approximate
lower bits and hence, produce small errors with high probability
of happening. Since the superiority of approximate adders
depends on the application they are used in, a systematic and
unified template for hybrid solutions, covering a relatively wide
range of approximate adders, are desirable and even required.

At the same time, designers have so far considered segmented
adders as equally segmented. The reason to consider only equal
segmentation is to have the minimum delay and thereupon,
an optimal approximate architecture. This consideration is
appropriate when working with area-efficient, slow adders
like Ripple-carry adder. However, working with fast and/or
optimal exact adders replaced as sub-adders, asymmetric and
non-equally segmented adders might outperform the equally-
segmented ones. One example is the system reported in Table I.

In order to address the above-mentioned problems, in this
paper, systematically, we propose a unified generic template
for approximate adders, which combines the two philosophies.

A. Nomenclature

In this paper, each adder’s name is followed by numbers. For
ETAII and ESA, the number is the size of equal segmented sub-
adders. For GeAr, the left number is the number of resultant
bits contributing to the final sum, and the right one is the
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Fig. 2. The proposed generic template of approximate adders

number of previous bits used for carry prediction. Regarding
LOA, it is the number of OR gates. And finally, for LOCA [17],
the numbers indicate the number of OR gates and constant-1s,
from left to right, respectively.

In addition to that, we have a new naming system based on
the proposed template architecture, which will be discussed
later in this section.

B. The Generic Template of Approximate Adders

The generic template for approximate adders is shown in
Fig. 2. As can be seen in the figure, the template is constructed
using the two aforementioned approximation methodologies.
An upper part which is constructed using a segmented adder
(the infrequent-errors philosophy) and a lower part composed
of OR gates and constant-1s (the small-errors philosophy).
Variable n denotes the length of operands to be added, while
nl and nh represent the bit-width of the lower and higher parts
of the template, respectively.

As depicted in Fig. 2, while the lower part is constructed
using nor OR gates as well as ncte constants, the upper part
is instantiated by an adder. The adder can be either exact
or approximate. In order to have a range of adders using
the template, we replace the higher-significant part of the
template with a segmented adder. The segmented adder splits
the entire carry propagation path into a number of short paths
and completes the carry propagations in these short paths
concurrently. Let k = {ks, ks−1, . . . , k1} denote a vector
including the size of resultant bits of each sub-adder, where s
is the number of its sub-adders, k1 is size of the resultant bits
of the first (the lowest significant) sub-adder, ks is size of the
resultant bits of the last (the most significant) sub-adder, and
so on. In addition, P = {ps, ps−1, . . . , p1} represents a vector
including number of previous bits used for carry prediction.
The vectors K and P describe the upper part of the architecture;
the ith sub-adder of the segmented adder which has a size of
ki+pi, uses pi previous bits to construct the input carry for the
sub-adder. In order to name each adder developed using the
template, we use the following format:

k
s
(p

s
)k

s−1
(p

s−1
) . . . k

1
(p

1
)|n

or
, n

cte
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Table II
EXAMPLES TO ILLUSTRATE HOW TO GENERATE SOME OF THE EXISTING

APPROXIMATE ADDERS USING THE TEMPLATE, 16-BIT ADDERS

Adder ks (ps )ks−1 (ps−1 ) . . . k1 (p1 )|nor , ncte
Exact adder 16(0)|0, 0
ETAII-4 4(4)4(4)8(0)|0, 0
ETAII-6 6(6)10(0)|0, 0
ESA-4 4(0)4(0)4(0)4(0)|0, 0
GeAr-26 2(6)2(6)2(6)2(6)8(0)|0, 0
LOA-8 8(1)|8, 0
LOCA-26 8(0)|2, 6

This way, using the template, not only a wide range of the
existing approximate adders can be developed, but also hybrid
and non-equal segmented approximate adders can be generated.

Table II tabulates some examples to illustrate how some
of the existing approximate adders are constructed using our
template. As can be seen in the table, different classes of
approximate adders can be implemented, changing variables of
the template. Since the GeAr adder can be constructed using
our proposed template, ACAI and ACAII are also in the list
of the adders which can be developed by the template.

In order to obtain the error formulas for the template, we
divide the architecture into lower and higher parts. Then, we
formulate the error metrics for each part. Finally, the error
metrics of the template can be obtained combining the error
formulas for each part of the template. Let us first introduce a
term in order to make the formulas, presented in the rest of
this paper, more compact:

Bi =

 0 if i = 0
i∑

r=1
kr otherwise

(6)

In order to have the histogram of the upper part of the
template which is a segmented adder, first, we need to
review the Generate and Propagate concepts. Generate Gj and
propagate Pj signals are computed using bitwise operations:

Pj = aj ⊕ bj , Gj = ajbj . (7)

where aj and bj are the primary inputs of the adder corre-
sponding to the bit position j.

From Fig. 2, when pi + ki − pi+1 bits generate a carry
signal and the pi+1 bits propagate the carry, the sub-adder
subi produces error with the magnitude −2Bi :

εhi
= −2Bi . (8)

Given the fact that for uniformly-distributed inputs Pr[Gj ] =
1
4 and Pr[Pj ] = 1

2 ; the probability of error εhi is calculated
as follows:

Prhi
= Pr

[
εhi

]
=
1

2

(
1− (

1

2
)ki+pi−pi+1

)
(
1

2
)pi+1 (9)

=
2ki+pi−pi+1 − 1

2ki+pi+1
.

where Prhi denotes the probability of error εhi , for the
uniformly distributed input vectors, produced by the ith sub-
adder for i ∈ {1, 2, . . . , s− 1}.

Replacing Eq. (8) and Eq. (9) in Eq. (3) as well as Eq. (4),
MSE and MAE of the segmented adder of Fig. 2 can be
expressed as:

MAEh =

s−1∑
i=1

|εhi |Prhi = 2nh−1−ks−ps − 1

2p1+1
, (10)

and

MSEh =

s−2∑
i=1

ε2hi
Prhi (11)

=22nh−2ks−ps−1 +

s−1∑
i=1

22Bi−1−pi−1
(
1− 2ki

)
.

Since all the errors have the same sign, the mean error value
of the segmented adder has the same value as its MAE:

µ
h
= −2nh−1−ks−ps +

1

2p1+1
, (12)

The metrics presented above, implicitly show the relation
between the error metrics and the higher significant sub-adder
variables, (i.e. ks and ps).

Regarding the lower part of the template, for the uniform
distributed data, each bit is uncorrelated and the error metrics
can be calculated as a function of the error characteristics
of each block. The total error of the lower part, εl, is
the summation of the errors of each block, εi, with the
corresponding weight, i.e., εl =

∑nl−1
i=0 εi2

i [17]. Given the
fact for the blocks used in the lower part of the template, i.e.,
OR gate and Cte-1, the error values are µor = − 1

4 , σ2
or =

3
16

and µcte1−1 = 0, σ2
cte−1 = 1

2 , the error metrics of the lower
part of the template are as follows:

µ
l
= 2ncte−2 − 2nl−2 , (13)

σ2
l
= 22nl−4 +

5

3
22ncte−4 − 1

6
, (14)

MAEl = 2nl−2 − 2ncte−2 + (15)

+
1

3

(
3

4

)nl−ncte
(
2ncte − 1

2ncte

)
.

The more details of the equations for the lower part of the
template can be found in [17].

Combining the error metrics for the higher and lower part
of the template, the error metrics for the template adder are
calculated as follows:

µ
temp

= 2nl . µ
h
+ µ

l
, (16)

σ2
temp

= 22nl . σ2
h
+ σ2

l
, (17)

MAEtemp = 2nl . MAEh + (1− PE
h
).MAEl . (18)

In order to have the formulas of the saturated metrics, the
understanding of the histogram of the template is required.
The histogram of the lower part of the template (LOCA) is
a bimodal distribution with mean value of µl and standard
deviation of σl presented in Eq. (13) and Eq. (14), respectively.
The number of bins (intervals) in the histogram of the upper
part of the template (Segmented adder) is equal to the number
of segments. These intervals are −2Bi , as mentioned earlier in
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Fig. 3. The error prediction of different metrics in an image processing algorithm. Different colors correspond to different classes of approximate adders. The
star * is used to mark an adder as an example to show a case where conventional metrics are misleading.

this section, in addition to the one at zero with Pr0 = 1−PEh.
The histogram of the template, as a result, is the repetition
of the lower part histogram at the intervals of the higher part
histogram. Let us consider that there is no overlap in the
histogram of the template (which is true in the practical cases).
Hence, the histogram consists of multiple bimodal distribution.
Applying a threshold between these distributions, the following
formula calculates the precise saturated MSE:

SMSEτ ≈
s−1∑
i=1

Prhi min(τ2 , (εhi + µl)
2 + σ2

l )

=

s−1∑
i=1

Prhi
min(τ2 , ε2hi

+ 2εhi
.µl +MSEl) .

(19)

where s denotes the number of segments in the upper part
segmented adder.

Note that this formula is a piecewise linear approximation
of the exact error. It provides a remarkable accuracy for any
τ that does not collide with one of the bimodal distributions
that compose the PDF of the error. In the unlikely situation
that τ hits one of those bimodal distributions, the actual error
decreases slightly and Eq. (19) provides an upper bound of
the error.

The other metrics can be calculated in a similar way. We
have precisely modeled all the metrics, from conventional to
saturated ones (SMSE, SMAE, SSTD), using the histogram of
the template. It is part of the developed framework which will
be discussed in the next section with more details.

IV. DESIGN METHODOLOGY

In this section, the methodology of our framework is
discussed. The proposed framework discriminates between
the scenarios where approximate processing does not provide
significant benefits from those where it does. In the later case,
it aids in obtaining optimal configurations of the template.

In the first step, using precise error models, the framework
finds all the possible configurations of the template for a given
error constraint. As mentioned in the previous section, the
possible configurations are conventional approximate adders,
new hybrid and/or non-equal segmented adders, truncated exact
adders, etc. The designer can choose between a traditional

metric (MSE, MAE, STD, etc) or the saturated counterpart.
In fact, in this step, a given threshold, based on the target
application, needs to be specified. Based on the definition
presented earlier in this paper, large enough thresholds result
in conventional metrics.

In the next step, for a target frequency, the framework sorts
the adders based on their expected silicon area. The sorting
process is done based on the bit-width of the upper part adder,
i.e.
∑s
i=1(ki+ pi), as well as the length of the sub-adders, i.e.

max(ki + pi)for i ∈ {1, 2, . . . , s}.
Finally, out of several possible architectures which have been

sorted, the top ten architectures are synthesized to determine
precisely the figures of merit. The complete procedure is
automatic.

Observe that the current framework does require a precise
characterization of the error (see the equations presented in the
previous section), but just a relative rank for the area. However,
it is also possible to model the area of the architectures. For
example, we have modeled the area and delay of ETAII and
ESA adders. Nevertheless, this precise characterization is out
of scope of the current paper.

V. EXPERIMENTAL RESULTS

We have structured this section in four steps: Firstly, we
evaluate the fidelity of our metric in a real algorithm. Secondly,
we evaluate the exactness of the presented error formulas.
Thirdly, we assess the quality of the adders designed with
our framework. And finally, we show the usability of our
framework.

In order to evaluate our new metric, we have compared
the adders in a simple image processing algorithm which first
calculates the average of the pixels using approximate adders
and then the error probability is calculated after binarization.
In Fig. 3, the probability of errors for 14 different 8-bit adders
are shown versus the calculated error metrics. The colors
correspond to different families of adders. The red color is
the precise adder, the green ones are different configurations
of ETAII (including the non-equal segmented ones), the light
blue ones are OLOCA architectures and the dark blue ones are
ESA adders. As can be seen in the figure, our saturated metric
predicts the errors in this algorithm more precisely. There is
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Table III
SIMULATION AND FORMULAS RESULTS FOR 16-BIT ADDERS

µ MAE σ SMSEτ=16 SMAEτ=64 SSTDτ=256Adder
sim math sim math sim math sim model sim model sim model

4(8)12(0)|0,0 -7.54 -7.50 7.54 7.50 175.57 175.11 0.47 0.47 0.12 0.12 10.97 10.94
4(4)4(4)8(0)|0,0 -127.56 -127.50 127.56 127.50 690.95 690.78 15.01 15.00 3.75 3.75 60.14 60.12
7(1)1(1)8(0)|0,0 -127.51 -127.50 127.51 127.50 181.03 181.02 95.50 95.50 23.88 23.88 123.80 123.81
6(6)10(0)|0,0 -7.54 -7.50 7.54 7.50 87.53 87.32 1.88 1.87 0.47 0.47 21.88 21.83
8(4)4(1)4(0)|0,0 -7.50 -7.50 7.50 7.50 32.00 32.00 60.07 60.00 4.51 4.50 32.00 32.00
8(0)8(0)|0,0 -127.54 -127.50 127.54 127.50 127.99 128.00 127.50 127.50 31.89 31.88 128.00 128.00
12(0)|2,2 -3.00 -3.00 3.70 3.70 4.18 4.18 26.50 26.50 3.70 3.70 4.18 4.18
7(1)5(0)|2,2 -123.02 -123.00 123.55 122.83 216.93 217.22 80.31 80.30 17.84 17.84 107.20 107.24
8(4)5(0)|2,1 -5.50 -5.50 5.78 5.75 31.82 32.31 10.40 10.40 2.75 2.75 31.62 31.61
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Fig. 4. Simulation results Comparison of 16-bit approximate adders: (a)STD vs. PDP, (b)SSTD applying threshold=24 vs. PDP. In order to keep the graphs
readable, ETA-8413 denotes the configuration: 8(4)4(1)4(0)|0,0 ; and ETA-7117 is: 7(1)1(1)8(0)|0,0 .

an almost linear relationship between quality (probability of
errors) and our saturated metric. The conventional metrics are
misleading in some cases. For instance, in Fig. 3(b), the adder
marked with ∗ is among the best configurations with the lowest
probability of errors; but, conventional MSE cannot predict
this and misleads to ignore the adder.

In order to evaluate the accuracy of the presented error formu-
las, the simulation and formulas results of 16-bit approximate
adders, developed using our proposed template, are tabulated in
Table III. The numbers presented in the table verify the perfect
accuracy of the presented formulas for the generic template of
approximate adders. As a result, using one compact accurate
formula, the error behavior of a wide range of approximate
adders can be modeled.

To assess the circuit characteristics and evaluate the approx-
imate architectures, we have generated VHDL description of
the proposed template. Different configurations of approximate
adders ranging from existing to new hybrid structures are
synthesized in a commercial low-power 65 nm library, for
16-bit operands. Using back-annotated simulations, dynamic
power dissipation of the adders are evaluated after synthesis. All
the adders have been simulated for 107 uniformly distributed
random input patterns. In addition, we have developed a
framework to distinguish the Pareto optimal architectures for
a given accuracy and hardware quality, based on the presented
formulas.

Fig. 4 illustrates a comparison of approximate adders

generated by the proposed template. The compared adders
are all optimal (area-delay efficient) architectures. In Fig. 4(a),
STD of approximate adders versus their Power-Delay Product
(PDP) are depicted. As can be seen in this figure, considering
the trade-off between error and PDP of the adders, OLOCA
architectures outperform all the other adders. Furthermore,
hybrid architectures, developed by the proposed template,
perform better than other existing approximate adders including
ETAII, ESA and GeAr. Another notable fact in this figure is
the superiority of non-equal segmented ETAIIs over the equal
segmented ones. As discussed in the previous section, since
the optimal adders are instantiated as sub-adders, non-equal
segmentation boosts the efficiency of segmented adders.

On the other hand, Fig. 4(b) depicts the Saturated STD
(SSTD) of each adder versus its PDP, applying a relatively
small threshold. As can be seen in the figure, considering
the trade-off between error and energy consumption of the
adder architectures, the hybrid architectures developed using
the proposed template outperform the rest of the adders. For
the applications whose error can be modeled using SSTD with
a small threshold, OLOCAs are not superior adders anymore,
due to their high probability of errors. The superiority of adders
depends on how stringent the threshold of the SSTD metric is.
Our new error metric helps to understand qualitatively and to
quantify numerically the intrinsic characteristics of the adders.
Furthermore, Fig. 4 shows that the optimal solutions cannot be
obtained using the standard and conventional methodologies
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Fig. 5. Comparison of 16-bit adders using the proposed framework, applying two timing constraints and different thresholds. Saturated Mean Squared Error
(SMSE) versus silicon area of adders: (a)-(d) Stringent timing constraint: frequency=4GHz ; (e)-(h) Relaxed timing constraint: frequency=800MHz. The final
silicon area has been collected from synthesis. TrExact is the short form of truncated exact adder. The green dashed line is used to show the error limit applied,
as an example, to our framework.

in most of the cases.
Finally, at the end of this section, we evaluate our framework.

In an attempt to assess our framework, we progress in two
steps: First, using our framework, we analyze various 16-bit
approximate adders ranging from conventional approximate
adders to new architectures developed from our template.
In this step, we show the functionality of our framework,
while comparing the adder architectures. Secondly, in order
to show the exactness of our framework, we synthesize more
architectures for a given error constraint. Here, the goal is
to show that the selected architectures by our framework are
actually the optimal architectures for a defined error limit.

Fig. 5 depicts a comparison of 16-bit adders developed
using our template. The SMSE of the architectures for four
different thresholds have been calculated using the error
models. The applied thresholds range from small, stringent
thresholds to the one which is large enough to represent
conventional MSE. The silicon area of the architectures have
been obtained synthesizing the selected architectures. Different
colors in the figure correspond to different bit-width of the
upper part adder. For example, the TrExact(13) is a truncated
exact adder, in which the upper part adder is a 13-bit exact
adder, and the lower part bits are constant-1s. As can be
seen in Fig. 5(a)-(d), for relatively small timing constraints,
when a stringent threshold applied, ETAII architectures are
superior adders due to their low probability of errors. As the

threshold increases, SMSE of ETAII architectures increase and
hybrid architectures show superiority, as illustrated in Fig. 5(c).
Continuing the threshold increment, the OLOCA adders tend to
be superior architectures, as depicted in Fig. 5(d). As a result,
qualitatively, the range of possible thresholds can be divided
into three regions: small, medium and large thresholds. For
small thresholds, conventional ETAIIs; for medium thresholds,
hybrid architectures; and for large thresholds (conventional
MSE), OLOCA adders are superior architectures.

The same comparison is shown in Fig. 5(e)-(h), carried out
with relaxed timing constraint corresponding to area-efficient
implementation of the architectures. As can be seen in the
graphs, regardless of the threshold, there is no reason to use
conventional approximate adders in this scenario. With relaxed
timing constraints, for all the thresholds, truncated exact adders
or OLOCA adders are superior architectures. Accordingly,
the framework discriminates this scenario, where approximate
adders do not provide considerable benefits from the scenarios
which they do.

To assess the exactness of our framework, in this step of
the experimental validation, we consider an illustrative error
limit and analyze that case in detail. Then, we generate all
the possible architectures which meet the defined constraint.
As an example, we consider a practical value for the error
constraint (SMSEτ ≤ 15). The architectures which meet the
above-mentioned constraint are shown with small red dots
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Fig. 6. SIMD coprocessor framework. Components that are not considered in
the case study are grayed out.

in Fig. 5. Additionally, the error limit is marked with green
dashed lines in the figure. The number of architectures that
meet the constraint increases, as the threshold is decreased.
Because of the fact that there are many architectures that meet
the constraint for small thresholds, in order to keep the graphs
readable, we show the example for larger thresholds: τ=64 and
τ=8192. In addition, we limit the architectures for the case
of τ=64, and we consider only the architectures where the
bit-width of their upper-part adders are 13-bit, as an illustration.

As can be seen in the figure, the architectures which have
been chosen by our framework (marks with light blue border),
among all the possible architectures (red dots), are in fact the
optimal ones. In short, Fig. 5 not only shows the functionality
of our framework, but also depicts how, in different scenarios,
different approximate adders are superior. A notably important
message of Fig. 5 is that not always using approximate adders
results in a better design. It should be discriminated where
approximate adders provide significant benefits from where
they do not. As mentioned, our framework is able to distinguish
these scenarios.

VI. CASE STUDY

In the following section, a case study using different
approximate adders in the ALU of an SIMD coprocessor for
a MIPS CPU is presented. The goal of the case study is to
assess the applicability of the proposed design framework
in more complex scenarios and not to evaluate the gains
achieved using the approximate adders. Clearly, the gains are
not considerable here since we are changing only one adder in
the ALU of a SIMD processor. The performance enhancement
as well as circuit area and power consumption reduction are
evaluated, while executing a Sobel image filtering application.
The Sobel filtering has been chosen as a relatively simple
application which uses addition in its algorithm. In addition,
Sobel algorithm is one of the typical applications used for
approximate computing bechmarking listed in [24].

A. Processor: Approximate SIMD Coprocessor

The underlying processor substructure for this case study
is depicted in Fig. 6. To decouple the performance of the
SIMD coprocessor from the main MIPS CPU, the coprocessor

resides in an own clock domain. The main MIPS CPU is
used for handling the application control flow, issuing vector
instructions over a clock-domain-crossing FIFO and initiating
DMA transfers between the system main memory and the
coprocessor’s local memory, which also crosses the clock
domain boundary.

For a meaningful evaluation, the coprocessor contains only
the necessary hardware resources required by the executed
Sobel filtering application, i.e., a register file containing 16
registers with 64 16-bit element subwords each. Furthermore,
each subword ALU is reduced to an exchangeable and config-
urable approximate adder/subtractor and fixed element subword
permutation multiplexers required to calculate the Sobel matrix
convolution. The critical path and thus the performance
limitation is located in the approximate adder/subtractor unit.

B. Evaluation Flow

For evaluation, the coprocessor ALUs are implemented with
different approximate adder entities, including those identified
by our framework. The SIMD coprocessor is synthesized to
ASIC gate-level netlists for coprocessor clock periods between
3.4 and 4.9 ns, using a TSMC 40 nm low-power standard cell
library. After the circuit area is obtained from synthesis, gate-
level netlist-based timing simulations using annotated parasitics
are performed to obtain the switching activity in the coprocessor
for power analysis.

The remaining main MIPS CPU system is simulated function-
ally and clocked fast enough to ensure that the coprocessor’s
performance is not limited by the instruction issuing. Moreover,
all necessary DMA image transfers are performed prior to all
switching activity and performance measurements. Therefore,
the pure computational performance of the coprocessor is
considered, being only a function of the clock period. For
the Sobel filtering application, the performance ranges between
275 µs per 512×512 pixels grayscale image frame for a clock

190 200 210 220 230 240 250 260 270 280

0.16

0.17

0.18

0.19

0.2

0.21

0.22

0.23

Performance [µs/Frame]

C
ir

cu
it

A
re

a
[m

m
2

]

ETAII-4 Precise adder LOA-4 12(0)|2,2

7.75

8

8.25

8.5

8.75

9

9.25

9.5

9.75

10

10.25

E
ne

rg
y

pe
r

Fr
am

e
[µ

J]
More perf. for given area/energy

Less area/energy for given perf.
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the SIMD coprocessor equipped with different approximate adder entities and
parameterizations. The solid lines denote the circuit area, the dashed lines
denote the energy per frame.
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circuit area of the coprocessor are compared for different adder architecture for three different frequencies: the yellow bar is the precise adder, the green bars
are conventional approximate adders, and the hatched blue bars are the hybrid architectures selected by the framework.

period of 4.9 ns and 190 µs per frame for 3.4 ns. The power
consumption of the coprocessor is converted to an energy
budget per image frame using these performance values.

C. Evaluation Results

In order to evaluate the adder architectures inside the
coprocessor, first we compare a precise adder, an OLOCA
architecture [17], and two conventional approximate adders for
all the frequencies. This way, the figure is readable because of
choosing limited number of adder architectures. In a separate
figure, using bar graphs, we compare more adder architectures
for their error values as well as their silicon area for three
different frequencies.

Fig. 7 compares the total coprocessor circuit area and
total energy per frame as a function of the performance for
selected adder configurations. This figure compares a precise
adder, a selected adder from our framework, and two classical
approximate adders for the performance ranges between 275 µs
per frame and 190 µs per frame. The arrows indicate how to
find area- and energy-efficient configurations for a desired
performance value or more performant implementations for
given area and energy budget constraints. It can be seen in
the figure that the OLOCA architecture developed using our
template outperforms the existing approximate architectures,
from both circuit area and energy consumption points of view.

The reference precise adder configuration reaches a maxi-
mum performance of 215 µs per frame. By inserting approxi-
mate adders, the performance can be boosted by up to 12%.
At a fixed performance, the evaluated approximate adders can
reduce the coprocessor circuit area by up to 10% and the energy
dissipation by up to 15%. Given the fact that the precise ALU
occupies 12% of the total coprocessor area and consumes 7%
of the total power, the significant reduction in hardware cost
becomes clear. Especially, the energy dissipation in non-ALU
parts of the coprocessor is reduced as well.

Fig. 8 depicts the comparison of the total coprocessor
circuit area for three different frequencies as well as the

probability of the error of adder architectures. More adder
architectures are compared in this figure: the precise adder,
conventional approximate adders and hybrid adders selected
by the framework. The probability of the error of the adders
are shown for a chosen binarization which corresponds to
the threshold (τ = 16) of our new metric. As can be seen
in the figure, considering the error-area trade-off for all the
three frequencies, the selected architectures by the framework
outperform the conventional approximate architectures for the
selected application.

VII. CONCLUSION

In this paper, a generic template for approximate adders
combining the small-errors and the infrequent-errors philoso-
phies has been proposed. A wide range of approximate adders,
along with new hybrid and non-equal segmented adders,
can be developed using the proposed template. The accurate
mathematical error formulas of the template has been conjointly
presented. Consequently, using one compact formula, the error
metrics of a wide range of approximate adders can be calculated.
In addition, a new error metric has been introduced in this
paper to address the insufficiency of the existing metrics. The
new parameterizable metric captures the requirements of the
stochastic applications.

Using experimental results, it has been shown that for
the scenarios that approximate adders provide considerable
benefits, our framework finds the optimal architectures. It
has been shown that applying different thresholds (τ ) change
the superiority of the adders. As a result, the parameter τ
can be considered as a knob in our new metric to model
more accurately errors in real applications. In conclusion, for
relaxed timing constraints, there is no need to use conventional
approximate adders, because they do not provide considerable
benefits. For stringent timing constraints, OLOCA, hybrid, and
ETAII architectures are superior classes of adder architectures
for large, medium and small thresholds, respectively.
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