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Abstract—Exploiting the trade-off between accuracy and hard-
ware cost has a tremendous potential to improve the effi-
ciency of integrated systems. Using this concept, numerous
approximate adders have been proposed in the last ten years.
Although conceptually different, all previous architectures have
been obtained with an ad-hoc and non-systematic methodology.
Instead, this work generalizes and systematically optimizes an
architectural template for approximate adders. The outcome,
called Optimized Lower-part Constant-OR Adder, outperforms
previous approaches in terms of accuracy and hardware cost.
For example, an 8-bit approximate adder implemented with our
new approach improves the mean squared error by 58.5%, while
simultaneously reducing the cost by 7.2% with respect to the
previously reported best architecture.

Index Terms—Approximate Computing, Stochastic Comput-
ing, Adder Architecture, Error-Cost Trade-off.

I. INTRODUCTION

STOCHASTIC computing has begun to emerge in response
to the languishing benefits of technology scaling. Rather

than hiding variations under expensive guard-bands, designers
have begun to relax traditional correctness constraints and
deliberately expose hardware variability to higher levels of
the computing stack [1]. Approximate computing, a promising
technique to reduce power, area and delay in VLSI design,
approximates a system by redesigning its logic circuit [2]. It
exploits the gap between the level of accuracy required by the
applications and that provided by the computing system, for
achieving diverse optimizations.

The researchers in the field of approximate computing have
paid special attention to adders, one of the key components
of arithmetic circuits. In fact, a surprisingly large number of
approximate adders [3]–[10] have been proposed in the liter-
ature: segmented adders where an n-bit adder is divided into
k-bit sub-adders [3]–[5]; carry select adders in which multiple
sub-modules are used [6], [7], approximate full adders where
the full adder is approximated [9], [10] and speculative adders
which are built upon the observation that the critical path is
rarely activated in traditional adders [11]–[13]. The current
situation is such, that even a fair comparison of approximate
adders is a challenging endeavor [14], [15]. Although all the
architectures are conceptually different, they share a common
characteristic: they have been obtained with an ad-hoc and
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non-systematic methodology. A remarkable exception is the
Generic Accuracy Configurable Adder (GeAr) that uses the
idea of template [8] but is not optimal.

Among all the purely combinatorial approximate adders, the
Lower-part OR Adder (LOA) [9] shows the best error versus
hardware-cost trade-off [14], [15]. As can be seen in Fig 1,
LOA [9] divides an n-bit adder into two sub-adders. While
the higher significant sub-adder consists of an (nh-1)-bit exact
adder, the lower part sub-adder is simply constructed by nl OR
gates (bits 0 to n

l
-1). To generate the carry-in signal for the

accurate adder, an extra AND gate is used which combines
the adder inputs of bit position nl i.e., anl and bnl . The
key advantage of LOA with respect to other architectures as
Equal Segmentation Adder (ESA) [4], Error Tolerant Adder
(ETAII) [5] or Almost Correct Adder (ACA) [3] is that the
approximation is restricted to the least significant bits and
therefore, the magnitude of the errors is limited.

The goal of this brief is to improve LOA systematically.
First, we generalize the LOA architecture in the form of an
architectural template; then, studying all the possible choices
to implement that template, we obtain an optimal architecture
for the presented template focusing on Mean Squared Error
(MSE). We call it Optimized Lower-part Constant-OR Adder
(OLOCA). Since LOA is the superior adder among the existing
approximate adders, our optimized architecture outperforms all
the existing approximate adders when considering the trade-
off between hardware-cost and accuracy. The experimental
evidence reported in this brief corroborate this fact.

Following the aforementioned goals, the paper is organized
as follows: Section II describes the structures of the architec-
tural template and of OLOCA. Afterwards, in Section III, we
quantify the advantages of OLOCA using experimental results;
furthermore, we validate the mathematical formulas developed
in Section II. Finally, Section IV concludes the paper.
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Fig. 1. Hardware architecture of the Lower-part OR Adder (LOA)
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II. ARCHITECTURE

To obtain systematically an optimal1 approximate adder, we
progress in three steps. First, we describe the error metrics
and hardware-cost quantifying the quality of the architecture;
second, we generalize the architecture of LOA into a more
abstract template; third, we optimize the template, regarding
MSE, to produce OLOCA.

A. Metrics

Different metrics need to be considered to evaluate the
quality of approximate adders; they quantify the trade-off
between error and hardware-cost.

The error is defined as the difference between approximate
and accurate output results of the adder, i.e.,

ε = S̃ − S, (1)

where S̃ is the approximate (erroneous) output of the adder
and S is the accurate result. The magnitude of the error
can be quantified with several metrics; among them, the
most common ones are the Average Error (µ), the Standard
Deviation (STD or σ), the Mean Squared Error (MSE), and
the Mean Absolute Error (MAE). They can be calculated as:

µ = E
[
ε
]
, (2)

σ =
√
E
[
(ε− µ)2

]
, (3)

MSE = E
[
ε2
]
= µ2 + σ2 , (4)

MAE = E
[
|ε|
]
, (5)

where E is the expectation operator. It should be mentioned,
that it is also common to employ the normalized version of
the previous metrics dividing them by the range of the adder,
i.e. 2n.

In order to evaluate the hardware efficiency of the architec-
tures, the area and delay of the designs need to be considered.
In the rest of this paper, A and D denote the hardware area and
delay, respectively. In the mathematical analysis, we use the
unit-gate model [16] where simple monotonic 2-input gates
(AND,OR,NAND,etc.) have a cost of one in area and delay,
and simple non-monotonic 2-input gate (XOR,XNOR) have a
cost of two in area and delay. Obviously, in the experimental
results, the actual area and delay of the circuit are considered.
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Fig. 2. The hardware structure of the general template

1Throughout this manuscript, "optimal" refers to "optimal for the given
template".

Table I
ERROR METRICS AND UNIT GATE CHARACTERISTICS OF THE

POSSIBILITIES FOR 2-TO-1 BLOCKS

µ̂ σ̂2 ˆMSE Â D̂

AND −3/4 3/16 3/4 1 1
OR −1/4 3/16 1/4 1 1
Buffer −1/2 1/4 1/2 0 0
Cte-0 −1 1/2 3/2 0 0
Cte-1 0 1/2 1/2 0 0

Table II
ERROR METRICS AND UNIT GATE CHARACTERISTICS OF THE

POSSIBILITIES FOR THE 2-TO-2 BLOCKS

µ̂ σ̂2 ˆMSE Â D̂

Half-Adder 0 0 0 3 2(1)
OR_AND 1/4 3/16 1/4 2 1(1)
Cte-1_AND 1/2 1/4 1/2 1 0(1)
Buffer_AND 0 1/2 1/2 1 0(1)

B. General Template Architecture Based on LOA

As discussed in the previous section, considering the error
versus hardware-cost trade-off, experimental results show that
LOA is the best architecture among all the existing approxi-
mate adders [14], [15]. Studying LOA’s architecture carefully,
it can be generalized as Fig. 2: the lower significant sub-adder
can be divided into nl 2-to-1 logic blocks (bits 0 to n

l
-1),

and a single 2-to-2 logic block. This later block receives the
inputs of the adder in bit position nl to generate the input
carry for the exact part using an AND gate, and its sum signal
can be generated inexactly. Finally, the higher significant sub-
adder is an exact adder. Clearly, the architecture of LOA can
be described by taking the proposed general template, putting
OR gates in each bit of the lower significant sub-adder, and
replacing the first bit of the higher significant sub-adder with
approximate circuitry of OR_AND.

In principle, any Boolean function with the right size
provides a choice for the blocks. Note that even a constant
function equal to one (Cte-1) or zero (Cte-0) is a valid
selection. For concreteness, the relevant choices for 2-to-1 and
2-to-2 blocks are tabulated in Tab. I and Tab. II, respectively.
Although we have studied all the possibilities, the blocks with
higher error values for the same cost have been eliminated
from Tab. I and Tab. II. In order to have an optimal architecture
for the template, the best combination of blocks from each
table should be chosen. For uniform distributed data, each
bit is uncorrelated and the error metrics of the template (T)
can be calculated as a function of the error characteristics of
each block. Since the total error, ε

T
, is the summation of the

errors of each block , ε̂i, with the corresponding weight, i.e.,
ε
T
=
∑nl

i=0 ε̂i2
i, we obtain:

µ
T
=

nl∑
i=0

µ̂i2
i (6)

σ2
T
=

nl∑
i=0

σ̂2
i 2

2i , (7)

MSE
T
=

nl∑
i=0

σ̂2
i 2

2i +

(
nl∑
i=0

µ̂i2
i

)2

, (8)
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where µ̂i and σ̂2
i are the average error and the variance of

error associated with the instantiated block in bit position i.
The corresponding values are given in Tab. I for bits 0 to nl−1
and in Tab. II for the bit nl, under the column names µ̂ and σ̂2,
respectively. For example, using this method, we obtained the
error metrics for LOA shown in Tab. III which agree with the
simulation results of [15]. The key question, now, is whether
the particular choices made by LOA are optimal, and if not,
which is the optimal alternative for the selected template. Next
subsection addresses this topic.

C. The Optimized Architecture

Depending on the error metrics which are chosen, different
optimization results might be obtained. Illustratively, here, we
choose the MSE as the error metric because of its relevance
in data processing applications. In order to obtain the optimal
architecture out of the general template, we need to evaluate
all the possible combinations of 2-to-1 and 2-to-2 logic blocks
of Tab. I and Tab. II. Let us proceed firstly intuitively and then
more formally.

The errors in the upper bits have a higher weight than in
the lower ones (see Eq. (8)). Thus, it is more profitable to
expend resources in the 2-to-2 block than in the lower 2-to-1
blocks. The best 2-to-2 blocks are the OR_AND and Half-
adder. Replacing the Half-adder with an OR_AND does not
improve the delay and improves the area only marginally; the
penalty is a large increase in the MSE. For this reason, the
idea of LOA (to use the OR_AND for the 2-to-2 block) is
not efficient. Once we fix the 2-to-2 block to a Half-adder, we
can observe that the average error introduced by the 2-to-2
block is zero or positive, while the 2-to-1 blocks introduce a
zero or negative average error. Thus, it is only useful to use
blocks with small µ̂ (the Cte-1) or small σ̂ (the OR). Therefore,
the optimal disposition of 2-to-1 blocks should be OR blocks
followed by Cte-1 blocks in the lower bits where the errors
are less relevant. Since the adder is constructed using Cte-
1s and OR gates, we call it Lower-part Constant-OR Adder
(LOCA). The structure of LOCA is depicted in Fig. 3 and its
error metrics can be expressed as follows:

µ
LOCA

= 2ncte−2 − 2nl−2 , (9)

σ2
LOCA

= 22nl−4 +
5

3
22ncte−4 − 1

6
, (10)

MAE
LOCA

= 2nl−2 − 2ncte−2 + (11)

+
1

3

(
3

4

)nl−ncte (
2ncte − 1

2ncte

)
, (12)

MSE
LOCA

=
1

6
22nl−2nor + 22nl−3 − 22nl−nor−3 − 1

6
(13)

To determine the optimal number of OR gates, we can
minimize the Eq. (13) versus nor, resulting the optimal value
in nor = log2

(
8
3

)
. The closest integer numbers, nor = 1

and nor = 2, produce the same MSE and are optimal.
We prefer nor = 2 that provides a better STD. We call
this architecture Optimized Lower-part Constant-OR Adder
(OLOCA). Although remarkable simple, it outperforms LOA
regarding STD, MSE and MAE.
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Fig. 3. The structure of LOCA; nl = ncte + nor

The error metrics, area and delay of LOA and OLOCA
are tabulated in Tab. III. Those formulas provide a better
understanding of the architectures and make the comparison
easier. As can be seen in the table, the average error of
OLOCA is slightly larger than that of LOA’s, while its STD is
much smaller. Hence, the MSE of OLOCA is almost 2.4 times
smaller than the MSE of LOA, which represents a considerable
improvement for practical circuits. Regarding the MAE, LOA
has a 1.6 times larger error with respect to OLOCA. Although
OLOCA does not improve the delay over LOA, its silicon area
is clearly smaller (for nl > 2).

It is also possible to obtain the optimal architecture out of
the general template more rigorously. Firstly, let us observe
that Eq. (8) and Tab. II imply that an architecture where the
2-to-2 block is not a Half-Adder has necessarily a MSE of
at least MSE

T
≥ σ̂2

nl
4nl ≥ 3

164
nl , which is worse than the

MSE of OLOCA (see Tab. III). Thus, the 2-to-2 block has to
be a Half-Adder in the optimal architecture.

In order to demonstrate that the selection of 2-to-1 blocks
of OLOCA is optimal in terms of MSE for the given template
(Fig. 2), we can proceed by induction, using nl as the induction
variable. A simple computation of all the possibilities, using
Eq. (8), shows that OLOCA is indeed optimal for nl = 1,
nl = 2 and nl = 3. Let us analyze an architecture with nl =
K, assuming the optimality of OLOCA for an architecture
with nl = K − 1. Observe that the total error, ε

T
, can be

decomposed into the independent contributions of the block
in bit position 0, ε̂

0
, and the remaining blocks, ε

MSBs
. Since

ε
T
= ε

MSBs
+ ε̂

0
, the MSE

T
can be expressed as a function of

the statistical characteristics of ε̂
0

and ε
MSBs

; more precisely:

MSE
T
=MSE

MSBs
+ ˆMSE

0
+ 2µ̂

0
µ
MSBs

, (14)

where µ
MSBs

and MSE
MSBs

can be calculated using Eq. (6)
and Eq. (8), respectively, iterating i from 1 to K.

Note that the optimization of the block 0 and the remaining
K − 1 blocks are not independent due to the term 2µ̂

0
µ
MSBs

.
However, if we prove that the block 0 is a Cte-1 in the

Table III
FORMULAS OF ERROR METRICS, AREA AND DELAY

LOA OLOCA
µ 1

4
−3
16

2
n
l

σ2 1
4
4
n
l − 1

16
53
768

4
n
l − 1

6

MSE 1
4
4
n
l 5

48
4
n
l − 1

6

MAE 3
8
2nl − 3

8
15
64

2
n
l − 3

4
2
−n
l

A
(n
h

− 1).A
FA

+ A
AND

+ (n
l

+ 1).A
OR

(n
h

− 1).A
FA

+ A
HA

+ (n
l

− ncte ).A
OR

D (nh − 1).tc + TAND (nh − 1).tc + TAND
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Fig. 4. Comparison of 16-bit LOA and OLOCA synthesized in a 65nm tech.: Simulation and formulas results. (a)MAE vs. ADP, (b)MSE vs. ADP.

optimal architecture, then it follows that µ̂
0

= 0 and the
term 2µ̂

0
µ
MSBs

disappears. In this case, the optimization of
MSE

MSBs
, consisting of K − 1 blocks, yields an OLOCA

architecture by the induction hypothesis.
Let us show that the block in bit position 0 has to be Cte-1

(for K ≥ 3) in order to have the optimal architecture regarding
MSE. Firstly, note that the alternative of choosing Cte-1 for
the blocks 1 to K−1, which produces MSE

MSBs
= 1
64

K − 2
3

and µ
MSBs

= 0, is sub-optimal. This is due to the fact that the
resulting MSE

T
, which is greater than or equal to MSE

MSBs
,

is worst than that of OLOCA. As a result, at least one of the
blocks should not be a Cte-1 in the optimal architecture. For
any of those cases, µ

MSBs
=
∑K−1

i=1 µ̂i2
i ≤ −1

2 , because each
term in the addition is strictly negative. A simple calculation
of the MSE for each of five possibilities for the block number
0, using Eq. (14), shows that a Cte-1 is the optimal selection
when µ

MSBs
≤ − 1

2 . This observation concludes the proof.

III. EXPERIMENTAL RESULTS

To assess the circuit characteristics and evaluate the pre-
sented architectures in the previous section, we have generated
VHDL description of the adders. Different configurations of
these adders are synthesized in a commercial low-power 65 nm
library, for 16-bit and 8-bit operands. Using back-annotated
simulations, dynamic power dissipation of the adders are eval-
uated after synthesis for the freq.=1GHz. Ripple Carry Adders
(RCA) are used as the sub-adders of all the approximate
adders. All the adders have been simulated for 107 uniformly
distributed random input patterns. In this section, each adder’s
name is followed by one number. For ESA and ETAII, this
number is the size of the equal segments. Regarding LOA,
and OLOCA the number is the size of the lower significant
sub-adder; i.e. nl.

In order to check the accuracy of the formulas, as well as
comparing the adder architectures, the error versus cost of
the adders for different values of nls are depicted in Fig. 4.
MAE and MSE versus Area-Delay Product (ADP) of the 16-
bit adders are shown in two graphs. LOCA has been simulated
for different number of constants in each nl case. As can be
seen in the graphs, replacing OR gates with Cte-1s decreases
the MAE and MSE values and at the same time the ADP;

the trend continues until the point where 2 OR gates remain.
After that point, the error values start increasing while the cost
of the adder decreases. As a result, the optimal architecture,
considering the error-cost trade-off, is obtained keeping 2
OR gates and place Cte-1s for the rest of 2-to-1 blocks.
This verifies the discussion in the previous section that the
optimal architecture has 2 OR gates. Replacing all the 2-to-
1 blocks with Cte-1s considerably increase the error values.
Although, replacing all the 2-to-1 blocks with Cte-1s results
in an architecture which is still better that LOA, it is not the
optimal architecture, as shown in the figure. It can also be seen
that the OLOCA and LOA’s formulas (see Tab. III) perfectly
predict the behavior of the adders for all the nls. Moreover,
for all nls, OLOCA outperforms LOA, both from cost and
error points of view; for the same values of errors, OLOCA
improves the cost almost 25% and for the same values of cost,
the error values of OLOCA are almost half of the LOA’s. As
an example, a 16-bit OLOCA-8 improves the cost by 13.6%,
MAE by 37.4% and MSE by 58% in comparison with LOA-8.

In order to evaluate OLOCA with another bit-width, we
have studied 8-bit adders as well; the results are tabulated in
Tab. IV. The table shows the accuracy of the presented formu-
las versus the simulation results, as well as the superiority of
OLOCA over LOA for all the nls. As an example, OLOCA-4
improves MAE by 36.9%, MSE by 58.5% and cost by 7.2%
in comparison with LOA-4.

To show the superiority of OLOCA over all the existing
approximate adders, besides LOA, we consider ESA , ETAII
and GeAr. Among the existing combinational approximate
adders, the above-mentioned architectures have proved to
have the best performance [14], [15] after LOA. Different
configurations of the adders have been simulated and the
results are depicted in Fig. 5. Fig. 5(a) depicts the MAE of
the adders versus ADP. Similarly, MSE versus Power-Delay
Product (PDP) of the adder architectures are illustrated in
Fig. 5(b). Although ESA is hardware-efficient, it is the least
accurate adder architecture. As an example, for the almost
same value of ADP, OLOCA-8 improves the error value by
97% in comparison with ESA-4. OLOCA-8 improves error,
ADP and PDP by 53%, 54.9% and 42.6% compared with
ETAII-4, respectively. The improvements for the MSE are even
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Table IV
SIMULATION AND FORMULAS RESULTS FOR 8-BIT ADDERS SYNTHESIZED IN A COMMERCIAL 65NM TECHNOLOGY

nl=2 nl=3 nl=4 nl=5 nl=6
Sim. Formula Sim. Formula Sim. Formula Sim. Formula Sim. Formula

LOA 1.38 1.38 2.88 2.88 5.87 5.88 11.87 11.88 23.86 23.88MAE OLOCA 0.75 0.75 1.78 1.78 3.70 3.70 7.48 7.48 14.96 14.99
LOA 4.00 4.00 16.00 16.00 63.93 64.00 255.90 256.00 1023.39 1024.00MSE OLOCA 1.50 1.50 6.53 6.50 26.50 26.50 106.57 106.50 424.95 426.50
LOA 1.99 1.98 3.99 3.99 7.99 8.00 16.00 16.00 31.99 32.00STD OLOCA 0.97 0.97 2.06 2.06 4.18 4.18 8.40 8.40 16.79 16.81
LOA 26.82 26.82 19.19 19.50 13.19 13.32 7.95 8.28 3.94 4.38ADP [zm2s] OLOCA 27.00 27.00 18.89 19.20 12.24 12.36 6.74 7.02 3.05 3.18
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Fig. 5. Comparison of 16-bit approximate adders synthesized in a commercial 65nm tech. with various configurations: (a)MAE vs. ADP, (b)MSE vs. PDP.

larger.

IV. CONCLUSION

In this paper, an optimal approximate adder, through gener-
alizing an architectural template for approximate adders, has
been proposed. The proposed adder "Optimized Lower-part
Constant-OR Adder (OLOCA)" shows considerable improve-
ment in both error and hardware-cost metrics in comparison
with the previously reported best architectures. The superiority
of OLOCA over the existing approximate adders has been
proved presenting mathematical analysis and further using
experimental results. As an instance, a 16-bit approximate
adder implemented with the OLOCA approach improves the
mean squared error by 58% while reducing the area-delay
product by 13.8% at the same time, in comparison with an
approximate adder implemented with the LOA approach.
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