
Modeling Optimal Dynamic Scheduling for
Energy-aware Workload Distribution in Wireless

Sensor Networks
Wanli Yu, Yanqiu Huang, Alberto Garcia-Ortiz

Institute of Electrodynamics and Microelectronics, University of Bremen, 28359 Bremen, Germany
Email:{wyu, huang, agarcia}@item.uni-bremen.de

Abstract—Energy-aware workload distribution becomes cru-
cial for extending the lifetime of wireless sensor networks
(WSNs) in complex applications as those in Internet-of-Things
or in-network DSP processing scenarios. Today static workload
schedules are well understood, while dynamic schedules (i.e., with
multiple partitions) remain unexplored. This paper models the
dynamic scheduling by considering both the communication and
computation energy consumption. It formulates a series of (in-
teger) linear programming problems to characterize the optimal
scheduling strategies. Surprisingly, even 2-partition scheduling
can provide the maximum gains. Besides the interest to evaluate
the optimality of on-line heuristics for dynamic scheduling, the
reported off-line strategies can be immediately applied to WSN
applications.

I. INTRODUCTION

Energy-aware workload distribution is one of the most
efficient approaches to reduce energy consumption [1]. It has
been intensively used in grids and multiprocessors, etc.; how-
ever, it is rarely studied in wireless sensor networks (WSNs),
especially considering dynamic schedules. The reason is that
in the traditional applications of WSNs, the workloads are very
simple and wireless communication is usually the most energy
intensive process [4]. However, as the applications of WSNs
become more complex, e.g. in-network DSP processing and
Internet-of-Things, it needs to efficiently distribute the work-
loads by considering both the computation and communication
energy consumption.

A few works manage to balance the workload by providing
the static distribution schedules with one constant partition
cut [5] [2]. The achievements are expected to be improved by
the dynamic scheduling with multiple partition cuts, which,
however, have not been investigated in WSNs. To the best
of our knowledge, this is the first paper that models the
dynamic workload distribution scheduling and provides the
performance comparisons with respect to the static ones.

II. MODELING THE WORKLOAD DISTRIBUTION AND
ENERGY CONSUMPTION FOR CLUSTER-BASED WSNS

This section models the workload distribution and the
energy consumption in the cluster-based WSNs, where the
whole workload is completed through the cooperation of the
slave and the master nodes.

A. Modeling Workload Distribution

A WSN workload can be represented by a synchronous
dataflow (SDF) graph [2] [3], G = (V ,E), as shown in Fig. 1.
Each actor v ∈ V is a computational module for executing
task; each edge e ∈ E represents a buffer for actors to store
and fetch data (tokens). The tokens consumed and generated

by an actor, kc(v) and kg(v), are:

kc(v) =
∑

e∈in(v)

ko(e), kg(v) =
∑

e∈out(v)

ki(e) (1)

where in(v) and out(v) are its input and output edges; ko(e)
and ki(e) are the output and input tokens on edge e. For each
edge, the total amount of its input tokens generated by the
source actor, src(e), equals its output tokens consumed by the
sink actor, snk(e), i.e., q(src(e)) · ki(e) = q(snk(e)) · ko(e),
where q(·) is the number of execution times of the actor.

Partition cut

e1

e
2

e3

e 4

v1

v2

v3

v4

v5 v6

e5

e6

e7

k i(
e 1)

k o(
e 1)

k
i (e
2)

k
o (e
2)

k i(
e 3)

k o(
e 3)

k i(
e 4
)

k o
(e 4
)

k i(
e 6)

k o(
e 6)

k i(
e 7)

k o(
e 7)

k i(e5
)

ko(e5
)

Workload SDF graph G = (V, E)

Gs = (Vs, Es) Gm = (Vm, Em)

Fig. 1: An example of the synchronous dataflow (SDF) graph

Distributing the workload among the slave and master nodes
is equivalent to divide the modeled SDF graph, G = (V ,E),
into two subgraphs, Gs = (Vs,Es) and Gm = (Vm,Em),
with a partition cut, X = [x(v1), · · · , x(vl), · · · , x(vL)]T . L
is the number of actors in the SDF graph; x(vl) is a boolean
value defined as: x(vl) = 0,∀vl ∈ Gs; x(vl) = 1,∀vl ∈ Gm.

To guarantee that a) the workload is completed by both the
slave and master nodes, and b) the data, kd, is transmitted from
the slave to the master, it has to satisfy: a) 1 ≤ 11×L ·X ≤
L− 1 and

b) BT ·X ≤ 0, where 11×L is a 1×L all one vector; B is the
incidence matrix of the SDF graph; 0 is an all zero vector. Let
Kv = [kn(v1), · · · , kn(vl), · · · kn(vL)] denote the vector of
the net consumed tokens of each actor, where kn(vl) = q(vl) ·(
kc(vl)− kg(vl)

)
, the transmitted data, kd, can be formulated

as:
kd = Kv ·X = Kv · (X − 1T

1×L) (2)

Notice that Kv · 1T
1×L = 0 in the SDF graph.

B. Modeling Energy Consumption

This subsection models the energy consumption including
computation and communication cost 1.

1The sleeping energy cost is not modeled here, which is typically very
small. The interested reader can refer [2] for a more detailed formulation.

The total computation energy consumption for slave i and
master on a given partition, Xi, in one scheduling period are:

Ecp si(Xi) =Ecp si ·
(

1T
1×L −Xi

)
Ecp m(Xi) =Ecp m ·Xi

(3)

where Ecp si =
[
ecp si(v1), · · · , ecp si(vl), · · · , ecp si(vL)

]
and Ecp m =

[
ecp m(v1), · · · , ecp m(vl), · · · , ecp m(vL)

]
are

the vectors of the computation energy cost of each actor when
it is executed in slave i and the master node, respectively. The
calculation of ecp si(v) and ecp m(v) can be found in [5].

The communication energy cost of slave node i and the
master node for transmitting and receiving kd bits data are:

Ecm si(Xi) = eo si + etx si · kd
= eo si + etx si ·Kv · (Xi − 1T

1×L)

Ecm m(Xi) = eo m + erx · kd
= eo m + erx ·Kv ·Xi

(4)

where eo si and eo m are the energy of slave i and the master
spent on the overhead activities [2]; etx si and erx are the
corresponding energy cost for transmitting and receiving one
bit data, respectively.

Since the master node is in charge of all the n slave nodes, it
has to iterate n times to receive and process the data. Combing
Eq. (3) and (4), the energy consumption of slave i and the
master node in one scheduling period can be expressed as:

Esi(Xi) = Ecp si(Xi) + Ecm si(Xi)

Em(X1,··· ,Xn) =

n∑
i=1

Ecp m(Xi) + Ecm m(Xi)
(5)

III. ENERGY-AWARE WORKLOAD DISTRIBUTION
SCHEDULES FOR MAXIMIZING THE NETWORK LIFETIME

For generality, we consider an asymmetrical network, where
each slave node needs an individual partition solution. The
network lifetime is defined as the time when the first node
runs out of energy, which is a very popular definition [2] [6].

A. Static Scheduling for Workload Distribution
The policy of the static scheduling is to use an individual

partition cut to distribute the workload for each slave and
master nodes during all time. The nodes in each scheduling
period consume fixed energy. The problem of maximizing the
network lifetime Tnet is equivalent to minimize its reciprocal
1/Tnet. It can be formulated as a binary integer linear pro-
gramming (BIP) problem:

arg min
Xi

max
{Em(X1,··· ,Xn)

Bm
,
Esi(Xi)

Bsi

}
, i = 1,··· ,n

subject to :

1 ≤ 11×L ·Xi ≤ L− 1 & BT ·Xi 5 0

(6)

By solving this BIP problem the static schedule can maximize
the network lifetime with one constant partition.

B. Dynamic Scheduling for Workload Distribution
In the real scenario, the workload cannot be distributed

equally with only one partition cut. An example is shown in
Fig. 2, executing actor v2 costs much more energy than v1
and v3. Assuming C2 is the partition calculated by the static
scheduling, the slave node will die soon, while the master
still has plenty of energy. If both cuts are used, the energy

consumption of slave and master can be more balanced. This
motivates us to study two concrete multi-partition schedules.

v1 v3v2

Partition cut
C1

Partition cut
C2

Fig. 2: A simple example of the schedule with 2 partitions
1) Cyclic scheduling: The policy of cyclic scheduling se-

lects a given set of partition cuts, they are iteratively used
one after another. The optimal solution can be calculated by
copying the original SDF graph nc−1 times (nc is the number
of the expected partition cuts) to obtain an extended graph,
then using Eq. (6) to calculate the big partition Xi which is a
nc·L×1 vector that consists of nc partitions Xi 1, · · · ,Xi nc.

As nc increases, some partition cuts may be repeated due to
the limited amount of possible partition cuts in a SDF graph.
The cyclic scheduling is actually selecting partition cuts with
the corresponding weights. When nc approaches infinity, it
can find the best solution to achieve the global maximum
network lifetime. But solving the BIP problem for larger nc
also becomes very computational expensive. We address this
issue in the following section.

2) Weighted scheduling: A weighted scheduling is pro-
posed to reduce the computation complexity of the cyclic
scheduling. It provides the ideal partition cuts with the cor-
responding weights (probabilities), through calculating the
probability of each actor that belongs to the slave or the master.

Let Ej
si(X

j
i) denote the energy cost of slave node i when

exploiting the partition Xj
i , and Ej

m(Xj
1,··· ,X

j
n) denote the

cost of the master node in the jth scheduling round. Assuming
that the network collapses after J rounds, according to Eq. (5),
the average energy cost of the slave and the master nodes in
one scheduling round can be formulated as:

Esi(Γi) =
1

J
·

J∑
j=1

Ej
si(X

j
i)

= eo si +
(
Ecp si − etx si ·Kv

)
·
(

1T
1×L − Γi

)
Em(Γi,··· ,Γn) =

1

J
·

J∑
j=1

Ej
m(Xj

1,··· ,X
j
n)

=

n∑
i=1

eo m +
(
Ecp m + erx ·Kv

)
· Γi

(7)

where Γi = 1
J

∑J
j=1 X

j
i = [γi(v1), · · · γi(vl), · · · γi(vL)]T .

Each element γi(vl) = 1
J ·

∑J
j=1 x

j
i (vl), satisfying 0 ≤

γi(vl) ≤ 1, is the probability that how often the actor vl
is executed by the master. Consequently, maximizing the
network lifetime can be formulated as the following linear
programming (LP) problem:

arg min
Γi

max
{Em(Γi,··· ,Γn)

Bm
,
Esi(Γi)

Bsi

}
, i = 1,··· ,n

subject to:

1 ≤ 11×L · Γi ≤ L− 1 & BT · Γi 5 0

(8)

This LP problem can be solved with the help of the
optimization tools. After obtaining Γi, it is straightforward to
calculate the corresponding partition cuts and their weights.
An example is illustrated in the simulation.

IV. SIMULATION RESULTS AND DISCUSSION

In this section, we present the initial simulation results to
estimate the potential of the dynamic schedules by comparing
with the static scheduling.

For simplicity, we focus on one cluster. It can be easily
extended to multiple clusters by iterating the schedules. The
topologies of the networks are randomly generated and the
battery energy of each node varies from 10 J to 50 J. Two
typical computation applications, MEPS and spectrum are
used, and the energy related parameters can be found in [2] and
[5]. The corresponding SDF graphs are shown in Fig. 3a and
Fig. 3b. Each simulation is repeated 100 times with random
networks and the results correspond to the average values.

(a) SDF graph of MEPS computation

1 256 256 1 1 1 1 1

c1

S
R
C

F
F
T

A
B
S

S
C
A
L
E

D
B

c4c2 c3

(b) SDF graph of spectrum computation

Fig. 3: The SDF graphs of the applcations of MEPS and
spectrum computations, and the related possible partition cuts.

Fig. 3 depicts the increase of network lifetime when ex-
ploiting scheduling policies w.r.t. no scheduling, in which each
slave node just executes the first actor. Obviously, both static
and dynamic schedules can drastically extend the network
lifetime. As n increases, the gains become more significant.
Taking MEPS computation for example: the static schedules
extend the network lifetime from 46% to 447% when n
increases from 1 to 10. The reason is that without scheduling
the master dies soon due to the increasing workload.

Moreover, the improvements of the dynamic schedules are
even larger compared to the static one. The cyclic scheduling
extends 2 and 4 times of the improvement of the static
scheduling when using 2 cuts as shown in Fig. 4a and Fig.
4b, respectively. As the number of the partitions nc increases,
the gains gradually rise and finally saturate. When n = 5 as
shown in Fig. 4d, the maximum gain provided by the weighted
schedule is 336%, which is 22.12% longer than the static
solution.

Further on, one remarkable result is that there are always
only two different cuts in the optimal partition solutions
regardless of applications, topologies and network sizes. For
instance, in one of the generated network with 10 slave nodes,
the Γi for spectrum computation returned by the weighted
scheduling is Γi = [0 0.1702 0.1702 0.1702 1] =. It iss
equals 0.1702 · [0 1 1 1 1] + 0.8298 · [0 0 0 0 1],
which corresponds to the partition cuts C1 and C4 with
weights 17.02% and 82.98% as shown in Fig. 3b. Consistently,
the partition cuts C1 and C3 with weights 36.26% and 63.74%
are provided for the MEPS application as shown in Fig. 3a.

V. CONCLUSIONS

This work models the dynamic workload schedules in
WSNs. It formulates a series of (integer) linear programming

problems to characterize the optimal scheduling strategies.
The initial simulation results show that the dynamic sched-
ules extend the network lifetime longer than the static one.
Remarkably, the maximum gains can be achieved by using
only 2 partition cuts regardless of applications, topologies and
network sizes.

nc=1 nc=2 nc=4 nc=6 nc=8
0S

20S

40S

60S

80S

100S

N
et

w
or

kg
lif

et
im

eg
im

pr
ov

em
en

t(
S

)

staticgscheduling

cyclicgscheduling

weightedgscheduling

MEPS:gn=1

(a)

nc=1 nc=2 nc=4 nc=6 nc=8
0%

20%

40%

60%

80%

100%

N
et

w
or

kg
lif

et
im

eg
im

pr
ov

em
en

t(
%

)

staticgscheduling

cyclicgscheduling

weightedgscheduling

spectrum:gn=1

(b)

nc=1 nc=2 nc=4 nc=6 nc=8
0E

100E

200E

300E

400E

500E

N
et

w
or

kd
lif

et
im

ed
im

pr
ov

em
en

t:
E

)

staticdscheduling

cyclicdscheduling

weighteddscheduling

MEPS:dn=5

(c)

nc=1 nc=2 nc=4 nc=6 nc=8
0%

50%

100%

150%

200%

250%

300%

350%

400%

N
et

w
or

kd
lif

et
im

ed
im

pr
ov

em
en

t(
%

)

staticdscheduling

cyclicdscheduling

weighteddscheduling

spectrum:dn=5

(d)

nc=1 nc=2 nc=4 nc=6 nc=8
0E

100E

200E

300E

400E

500E

600E

N
et

w
or

kd
lif

et
im

ed
im

pr
ov

em
en

t:
E

)

staticdscheduling

cyclicdscheduling

weighteddscheduling

MEPS:dn=10

(e)

nc=1 nc=2 nc=4 nc=6 nc=8
0%

100%

200%

300%

400%

500%

N
et

w
or

kd
lif

et
im

ed
im

pr
ov

em
en

t(
%

)

staticdscheduling

cyclicdscheduling

weighteddscheduling

spectrum:dn=10

(f)

Fig. 4: Comparisons of the performance on extending network
lifetime when exploiting static and dynamic schedules with
respect to no workload distribution scheduling.

REFERENCES

[1] G. Cybenko. Dynamic load balancing for distributed memory multi-
processors. Journal of Parallel and Distributed Computing, 7(2), pp.
279–301, 1989.

[2] Y. Huang, et.al. Accurate energy-aware workload distribution for wireless
sensor networks using a detailed communication energy cost model.
Journal of Low Power Electronics, 10(2), pp. 183–193, 2014.

[3] D.-I. Ko, et.al. Energy-driven partitioning of signal processing algorithms
in sensor networks. Embedded Computer Systems: Architectures, Model-
ing, and Simulation, pp. 142–154, Springer Berlin Heidelberg, 2006.

[4] Y. Huang, et.al. Analysis of pkf: A communication cost reduction
scheme for wireless sensor networks. IEEE Transactions on Wireless
Communications, 15(2), pp. 843–856, 2016.

[5] C.-C. Shen, et.al. Energy-driven distribution of signal processing appli-
cations across wireless sensor networks. ACM Transations on Sensor
Networks, 6(3), pp. 24:1–24:32, 2010.

[6] W. Yu, et.al. An altruistic compression-scheduling scheme for cluster-
based wireless sensor networks. In Proceedings of the 2015 IEEE
Inernational conference on sensing, communication, and networking, pp.
73–81, 2015.

