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Stochastic Mixed-PR:
A Stochastically-Tunable Low-Error Adder

Ardalan Najafi, Student Member, IEEE, and Alberto Garcia-Ortiz, Member, IEEE

Abstract—Approximate computing is a promising paradigm in
low-power design to trade off power efficiency by accuracy. How-
ever, its usability in real applications is restricted due to the lack
of a dynamic configuration of the error characteristics. Most of
the existing approximate adders have a fixed level of accuracy. On
the other hand, the approximate adders which are configurable
can only switch between an exact mode and a fixed level of
approximation. This brief presents the mathematical stochastic
error analysis of the adders, for the first time. Furthermore,
based on the analysis, we propose to use a mixed adder as a
reconfigurable architecture. This adder outperforms the state-
of-the-art configurable adder. Moreover, it reduces the energy-
delay product considerably in comparison with its conventional
counterpart.

Index Terms—Approximate computing, stochastic computing,
adder architecture, reconfigurability, error-cost trade-off.

I. INTRODUCTION

APPROXIMATE computing, a technique to reduce power,
area and delay in VLSI design, optimizes a system by

redesigning its logic circuit, allowing inexact functionality [1],
[2]. It exploits the gap between the level of accuracy required
by the applications and that provided by the computing system,
for achieving diverse optimizations.

Stochastic computing is another technique to trade off en-
ergy and quality of a circuit. Instead of hiding variations under
expensive guard-bands, designers have begun to relax tradi-
tional correctness constraints and deliberately expose hardware
variability to higher levels of the computing stack [3]. The
considerable power and performance overheads imposed by
worst-case design practices can be relaxed by scaling up
the frequency, i.e. frequency overscaling (FOS), or scaling
down the operating voltage, i.e. voltage overscaling (VOS).
An overscaled design consumes lower power than its worst-
case designed counterparts. At the same time, since the delay
of some paths may now be greater than the clock period under
certain conditions, timing violation may occur [3]. Overscaling
can be considered as a knob to dynamically tune the exactness
of the adder architectures [4]. This technique, however, has not
been remarkably embraced by the researchers. The rationale
is that the conventional fast adder architectures start to make
big errors as soon as they enter the stochastic regime.

Approximate adders, as key components of approximate
arithmetic units, have attracted special attention of the re-
searchers in the past few years. Among the existing config-
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urable architectures, Refs. [5] and [6] are remarkable designs
which use the idea of template. However, most of the existing
architectures fix the level of hardware approximation statically,
and hence, the level of approximation can not be dynamically
tuned based on the application demand.

Nowadays, adaptation plays a major role in approximate
processing [7]. In several scenarios, such as general purpose
processors, DSP applications with variable quality signals
(SNR), etc., both approximate and exact functionalities are
required [8]–[10]. Fundamentally, this feature can be obtained
in two ways: 1) by configuring the circuit logic or 2) by
applying stochastic techniques.

In the first case, reconfigurability may be obtained by
shutting down some parts of the logic [8] or bit truncation
strategies [9]. These techniques use a control signal to switch
between approximate and exact modes dynamically. However,
both techniques are able to switch between an exact mode
and an approximate mode with a fixed approximation level.
The system can also be reconfigurable by adding an error-
correction unit to the approximate architecture [11], [12]. This
technique, however, increases the latency, silicon area and
power consumption of the design.

Depending on the application demands for performance,
different adder architectures are preferred. For a relaxed timing
constraint, an exact adder is implemented with a Ripple-Carry
Adder (RCA), Fig. 1(a). With stringent timing constraints,
an exact adder is implemented with a Parallel-Prefix Adder
(PPA), Fig. 1(b) as an example. For the cases in between, the
synthesis tools implement an exact adder with a mixed adder
of PPA and RCA, where the RCA is used for the MSBs to
decrease the number of worst paths. Fig. 1(c) is as an example
of the above-mentioned mixed adder. In this brief, we propose
the use of a mixed adder with late input MSB arrival time,
which allows embracing the idea of overscaling for the sake
of reconfigurability. Aiming that, a precise analysis of the error
behavior of adders in stochastic regime is presented, for the
first time, in this brief.

The rest of this brief is organized as follows: Section II an-
alyzes the stochastic error behavior of adders mathematically.
Afterwards, in Section III, we quantify the advantages of the
proposed mixed adder using experimental results. Moreover,
we validate the mathematical analysis developed in Section II.
Finally, Section IV concludes the paper.

II. STOCHASTIC ANALYSIS

Frequency (voltage) overscaling is a conventional technique
to dynamically trade-off the energy and accuracy of an adder.
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Fig. 1. The illustrative architectures of the exact adders: (a) Ripple-carry adder, (b) Parallel-prefix adder (Sklansky), (c) Std-mixed adder, (d) Mixed-PR adder

However, even a slight frequency (voltage) overscaling in
conventional adders causes large timing errors to occur and
degrades the quality of the adders rapidly. This rapid quality
loss under overscaling was one of the main reasons to disre-
gard stochastic computing techniques to dynamically tune the
adder architectures.

As discussed in [4] and [13], with overscaling, RCA fails
moderately when entering the stochastic regime. Unlike that,
a pure PPA fails catastrophically with overscaling. However,
RCA is extremely slow and starts to make errors at lower
frequencies than a PPA. To solve the problem, we propose
to use the mixed adder architecture with late input MSB
arrival time, which shows a gradual increment in error when
entering the stochastic regime. Hence, the proposed adder
can be dynamically configured using FOS (VOS) techniques.
We call the mixed adder with late input MSB arrival time,
Mixed-PR, while the conventional mixed adder realized by
the synthesis tool is called Std-mixed, for the rest of this brief.

In the rest of this section, firstly, we introduce the idea of
our stochastic analysis and the nomenclature used in this paper.
Then, the error characteristics of RCA in stochastic regime is
analyzed. Once the behavior of an overscaled RCA is under-
stood, we can justify why our proposed adder can be efficiently
used in the stochastic regime. Subsequently, the error formulas
of the proposed adder are presented mathematically.

A. Nomenclature and analysis strategy

In order to analyze the error behavior of the adders in the
stochastic regime, we consider the abstract adder depicted in
Fig. 2, divided into two sub-blocks, where nl and nh are the
bit-width of the blocks Dl and Dh, respectively. Let us con-
sider the transition of inputs at time 0, and sampling the data
at time T. Correspondingly, a− and b− represent the previous
values of inputs a and b, respectively. In addition, due to the
fact that we are analyzing blocks with late arrival signals, in
order to perform our analysis, we have to differentiate between
the logic (ideal) values (e.g. a and a−), and the temporal
evolution of signal (e.g. a[t] where a[0−]=a− and a[0+]=a).

DlDh

cnl CinCout

sn−1 snl
snl−1 s0

bn−1an−1 b0a0
...

bnl−1anl−1bnl

...

......

anl

Fig. 2. The template of an adder split into two sub-blocks, used for the error
analysis.

Considering FOS, if we assume a scenario (clock period) in
which Dh is the block that makes errors, with the information
of the signal cnl

[t], we can characterize the stochastic errors
of the adder. As a result, the problem of analyzing the error
behavior of the adder of Fig. 2 in the stochastic regime can be
split into two parts: 1) to characterize the temporal evolution
of signal cnl

[t], and 2) to calculate the error as the result of
the temporal evolution of signal cnl

[t].
Since the concepts of prefix structures are used often in this

paper, P, G and K are used for the terms propagate, generate
and kill, respectively. Traditionally, these terms are defined as
pi = ai ⊕ bi, gi = ai.bi and ki = ai.bi, where i is the bit
position. The theory of the parallel prefix architectures, [14],
can be used to accelerate the calculation of carrys using the
prefix operator • defined by:

g
i:m

= g
i:j

+ p
i:j
g
l:m

, p
i:m

= p
i:j
p
l:m

. (1)

where i ≥ l ≥ j ≥ m. Using the generate and propagate
signals, the carry signals ci can be computed as follows:

ci = gi−1:0 + pi−1:0 .Cin. (2)

In order to develop our error models, we use real delays
instead of unit-gate delays. Therefore, the terms τcc, τcs are
used. The notations are defined in Fig. 1. In addition, the error
is defined as:

ε = S̃ − S , (3)

where S̃ and S are the erroneous and the exact outputs,
respectively.

In order to develop the error formulas of the adders, let us
first consider a single FA with a late carry input signal. As a
result, the temporal evolutions of S[t] and Cout[t] depend on
the temporal evolution of Cin[t] and logical values of inputs
a and b. More precisely, the logical equation of sum bit, si =
pi ⊕ ci, can be rewritten arithmetically, as follows:

si[T ] = pi + ci[T − τcs]− 2pici[T − τcs]
= pi + (−1)pici[T − τcs].

(4)

Taking Eq. (3) and Eq. (4) into consideration, the error
corresponding to each sum bit of an adder is:

εsi [T ] = (−1)pi .

(
ci[T − τcs]− ci

)
.2i, (5)

where εsi is the error corresponding to the output at bit
position i. In a similar manner, the following equation models
the error of the output carry of an n-bit adder:

ε
Cout

[T ] = p
n−1

.

(
cn−1[T − τcc]− cn−1

)
.2n . (6)
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Table I
POSSIBLE TRANSITIONS ON c1[t]

Transition of a0,b0 Transition of c1[t] Prob.
k−0 → k0 0 → 0 1/16

k−0 → p0 0 → Cin 1/8

k−0 → g0 0 → 1 1/16

g−0 → k0 1 → 0 1/16

g−0 → p0 1 → Cin 1/8

g−0 → g0 1 → 1 1/16

p−0 → k0 C−
in → 0 1/8

p−0 → p0 C−
in → Cin 1/4

p−0 → g0 C−
in → 1 1/8

B. Stochastic error analysis of RCA

In order to analyze the error behavior of RCA in stochastic
regime, the blocks of Fig. 2 are instantiated with RCAs.
Consequently, Eq. (5) and Eq. (6) can be rewritten in respect
to node cnl

as follows:

εsi [T ] = (−1)pi .
(
cnl [T−τcs−(i−nl)τcc]−cnl

)
.2i.pi−1:nl , (7)

εCout
[T ] =

(
cnl [T − nhτcc]− cnl

)
.2n.pn−1:nl . (8)

For the case where τcc = τcs, Eq. (7) and Eq. (8) can be
combined as follows:

εrca[T ] =

nh−1∑
i=0

(
pnl+i−1:nl

)
.
(
cnl [T − (i+ 1)τcc]

− cnl [T − iτcc]
)
.2nl+i .

(9)

The equations presented above show that to calculate the
error of a RCA for a given clock period, the temporal evolution
of cnl

[t] is needed.
In order to analyze the temporal evolution of cnl

[t], let
us split the block Dl of Fig. 2 into two sub-blocks in a
way that the higher significant sub-block meets the timing
constraints of the specified clock period, while the lower
significant sub-block violates the timing. The value of cnl

[t]
is constant "1" or "0" over time, if the higher significant
sub-block does not propagate the carry. Correspondingly, the
adder does not make any error, due to constant behavior of
signal cnl

[t]. Alternatively, if the higher significant sub-block
propagates the carry, the behavior of the carry out signal of
the lower significant sub-block is copied to the signal cnl

[t].
Consequently, cnl

[t] is just the delayed version of ci[t].
Let us consider nh = 1, which results in a correspondence

between cnl
[t] of Fig. 2 and c1[t] of Fig. 1-a. Considering

the possible transitions of the inputs of the first FA, i.e. a0
and b0, the transitions of signal c1[t] can be found in Tab. I.
Depending on Cin, the probabilities of changes in c1[t] are
different. The probabilities of transitions on c1[t] are tabulated
in Tab. II for the scenario in which Cin is constant "0", as well
as the scenario that Cin is an uniformly distributed random
input (i.e. equals "0" or "1" with a probability of 1/2). In
order to generalize the relation between input transitions and
the carry signals, Tab. III tabulates the changes on the output
carry of the FA in bit position i, i.e. ci+1[t], depending on

Table II
PROBABILITY OF CHANGES ON c1[t]

Cin = 0
c1[0] c1[τ ] prob.

0 0 9/16
0 1 3/16
1 0 3/16
1 1 1/16

random Cin

c1[0] c1[τ ] prob.
0 0 1/4
0 1 1/4
1 0 1/4
1 1 1/4

the transitions of its inputs, i.e. ai and bi, and the input carry
of the FA, i.e. ci[t]. Considering Tab. III, and having c1[t],
the possible changes of c2[t] and corresponding probabilities
can be derived. Having the changes of c2[t], the characteristic
of the signal c3[t] can be derived and so on. Let us formulate
characterizing of the ci[t] embracing the information presented
in Tab. II, and Tab. III. If Pr(C1) is the prob. column of
the table containing the characterization of c1[t], i.e. Tab. II,
Pr(Ci) for i ∈ {2, n−1} can be calculated as follows for the
case Cin is uniformly random:

Pr(Ci) =
1
8

[
M
M

]
+ 1

8

[
Pr(Ci−1)
Pr(Ci−1)

]
+ 1

4

 Pr(Ci−1)h
0
0

Pr(Ci−1)l

 ,
(10)

where M is a vector with the same size as Pr(Ci−1) which
only the first and the last elements of this vector are one
and the rest are zero, i.e. [1 0 0 ... 0 1]T ; Pr(Ci−1)h and
Pr(Ci−1)l are the upper and lower half of the probability
column of the previous table, i.e. ci−1. Note that, the number
of changes on a carry bit is linked to its bit position, and
accordingly, the size of the table representing transition pos-
sibilities of a carry bit depends on its bit position. Therefore,
the size of the table for c1, Tab. II, is 22, the size of the table
for c2 is 23 and so on.

C. Stochastic error analysis of Mixed-PR adder

Conventionally, when the timing constraints lie between the
delay of RCA and PPA, these two adder structures are mixed,
where the lower bits a parallel prefix structure is realized,
and a serial prefix is used for the upper bits. However, if Dl

in Fig. 2 is a PPA, the behavior of signal cnl
[t] is different

from that analyzed above. The rationale is that the critical
path to node cnl

instead of being one path as in RCA, are
multiple paths because of a parallel prefix structure. Hence,
the transition combinations of signal cnl

[t] that produce errors
are more probable which results in a dramatic increase of error
in stochastic regime [4], [13].

Let us analyze mathematically the error behavior of the
adder of Fig. 2 when instead of RCA, a PPA is instantiated
as the upper block (Dh).

Table III
PROBABILITY OF CHANGES ON ci+1[t] FOR THE TRANSITIONS OF INPUT

ai,bi
transition

changes in ci+1[t] Prob.
t=0 t=τ t=2τ ... t=T

pi
− → pi c−i+1 ci+1 ci+1 ... ci+1 1/4

pi
− → pi c−i ci+1 ci+1 ... ci+1 1/4

pi
− → pi c−i+1 c−i ci ... ci 1/4

pi
− → pi c−i c−i ci ... ci 1/4
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Using Eq. (3), Eq. (4) and Eq. (2), we can develop the error
formulas of the Mixed-PR adder in the stochastic regime, con-
sidering an Sklansky architecture, as an instance. Obviously,
the general equations Eq. (5) and Eq. (6) are also valid here
for the PPA. Similar to the RCA, we can write these equations
in respect to the node cnl

:

εsi [T ] = (−1)pi .
(
cnl [T − τcs − dlog2(i− nl + 1)eτcc]−
cnl

)
.2i.pi−1:nl

,
(11)

εCout
[T ] =

(
cnl [T −dlog2(nh+1)eτcc]−cnl

)
.2n.pn−1:nl

. (12)

If we assume that τcs = τcc, and if the size of Dh is a power
of 2, Eq. (11) and Eq. (12) can be combined as follows:

εmix[T ] =

log2(nh−1)∑
i=0

(
pnl+i−1:nl

)
.(cnl [T − (i+ 1)τcc]−

cnl [T − iτcc]).2
nl+i .

(13)

Considering the RCA as an architecture with a serial prefix-
processing stage, Eq. (9) and Eq. (13) show that decreasing
the clock period, the magnitude of error of each level of the
prefix-processing stage corresponds to the first bit of that level.
In other words, as Eq. (11)-(13) show, the Mixed-PR adder
groups the bits of each level of the prefix-processing stage,
and their errors compensate each other. This fact explains the
reason why the error increment in Mixed-PR adder is gradual
in stochastic regime.

III. EXPERIMENTAL RESULTS

To assess the circuit characteristics and evaluate the archi-
tectures presented in the previous section, we have generated
VHDL description of the adders. The adders are synthesized
in a commercial low-power 65-nm library for 12- and 16-bit
operands. Using back-annotated simulations, dynamic power
dissipation of the adders is evaluated after synthesis. All the
adders have been simulated for 107 uniformly distributed
random input patterns. In this section, the mixed adders’ name
are followed by two numbers. The numbers represent the
bit-widths of the higher significant and the lower significant
blocks, respectively.

In order to check the accuracy of the presented models, the
mean absolute error (MAE) versus clock period of the RCA
and the Mixed-PR adder are depicted in Fig. 3. The model for
12- and 16-bit adders are compared with the simulation results.
As can be seen in the graph, the behavior of the adders in the
stochastic regime is predicted precisely using the presented
models.

In order to evaluate the efficiency of the Mixed-PR adder,
we have studied and compared 12-bit adders for different clock
periods. The results are shown in Fig. 4. In this figure, the
MAE versus energy-delay product (EDP) as well as area-
delay product (ADP) of the adders are depicted. As illustrated
in this figure, for the same values of error, the Mixed-PR
outperforms all the other architectures from both the EDP and
the ADP points of view. As an example, if an application limits
the maximum error to log2(MAE) = 2.5, the Mixed-PR-84
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Fig. 3. Comparison of the simulation (_s) and the model (_m) results for the
RCA and Mixed-PR for (a) 12-bit adders and (b) 16-bit adders, synthesized
in a 65-nm technology.

reduces the EDP and ADP about 40% in comparison with the
conventional mixed adder, i.e. the Std-mixed-48 adder. The
Mixed-PR-84 also reduces the EDP and ADP about 21% and
31%, respectively, in comparison with the adder of Ref. [9]
when k is fixed to the optimal value of 4.

The energy consumption, silicon area, and the maximum
clock period for a given error are reported in Tab. IV. As can
be seen in the table, in contrast to the extreme architectures
(i.e. RCA and PPA), our Mixed-PR-84 provides a promising
trade-off; it requires only 147 fJ and achieves an speed of 0.65
ns. Furthermore, regarding the maximum achievable speed for
a given MAE (5 in this example), we observe that Mixed-PR-
84 improves the speed by a factor of 1.75x when entering into
the approximate domain. It is the largest improvement of any
other adder. Incidentally, we can note that the performance
of the traditional Std-mixed-48 is very poor in terms of the
maximum speed for a given MAE, which is 0.63 ns versus the
0.37 ns of our adder. Because of this, stochastic techniques
had been rejected until now as a suitable method to construct
inexact adders.

To exemplify the advantages of our approach, let us consider
two scenarios. In the first one, an adder needs to work in exact
mode with a clock period of 1.1 ns, while in approximate mode
a maximum MAE of 5 is allowed. For this low-demanding
scenario, even the RCA and the adder of Ref. [9] with k=4
will work. They run in exact mode very efficiently (143 fJ),
but the maximum speed in the inexact mode is very limited.
The use of a PPA will allow a max speed of 0.31 ns in the
inexact mode, but in the relaxed exact operation as much as
232 fJ is required. Our approach will operate in exact mode
consuming only 147 fJ (factor 1.6 smaller than the PPA) and

Table IV
COMPARISON OF MIXED-PR-84 ADDER WITH 12-BIT ADDERS

GENERATED BY THE SYNTHESIS TOOL IN A COMMERCIAL 65NM.

Adder Energy [fJ] Area [µm2] T(ε=0) [ns] T(ε=5) [ns]
Mixed-PR-84 147.30 171.72 0.65 0.37
RCA 143.00 108.00 1.09 0.78
Std-mixed-48 151.70 171.72 0.66 0.63
PPA 232.20 182.88 0.32 0.31
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Fig. 5. Comparison of the Astronaut image after Average and Sobel filtering
using (a)exact adder, (b)stochastic Std-mixed adder, and (c)proposed stochastic
Mixed-PR adder. Stochastic adders work with a clock period of 0.5 ns.

allowing a maximum speed in the inexact mode of 0.37 ns
(factor 2.5 faster than RCA). As a second scenario, let us
consider that the adder needs to work with a period of 0.66 ns
in the exact mode. In this case the RCA approach (and that of
Ref. [9]) will not meet the timing requirements. Our approach
still works and provides the same energy advantages versus
PPA, as mentioned above.

In order to show the superiority of the Mixed-PR adder over
its conventional counterpart, i.e. Std-mixed adder, the adders
are evaluated in a more realistic scenario where the inputs
have non-uniform distribution. In this case-study, the adders
are used in a two-step image processing algorithm. In the first
step, the Astronaut image is filtered with the average filtering
using a 3 × 3 square kernel. In the second step, the result of
the average filtering is fed to the Sobel filter to do the edge
detection. The results of the process using the exact, Std-mixed
and Mixed-PR adders are shown in Fig. 5. As can be seen
in the figure, while the resulting image processed by the use
of the Std-mixed is not usable, the Mixed-PR adder is still
working perfectly in a relatively critical frequency.

IV. CONCLUSION

In this brief, using precise stochastic error analysis, the use
of a mixed adder with late input MSB arrival time has been
proposed. Our stochastically tunable Mixed-PR adder shows a
gradual decrease in accuracy in contrast to the abrupt accuracy
decrease of its conventional counterparts. Moreover, unlike
the existing reconfigurable adders which switch between two
modes (i.e. fixed approximate and exact modes), the proposed
adder can be configured in multiple modes depending on the
operating frequency and supply voltage. Furthermore, using

overscaling techniques, the mixed adder does not require any
additional logic to be configured to the approximate modes.
Using experimental results, the superiority of the proposed
adder over its conventional counterparts as well as existing
configurable adders has been shown.
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