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Abstract—In recent years, multihop wireless networks have
been playing a key role in many Internet of things applications.
Due to the limited resources of wireless nodes, extending the
network lifetime is one of the most crucial issues that needs to be
concerned. This work aims to maximize the network lifetime by
appropriately distributing the tasks of the applications for each
node in the network. Firstly, a centralized optimal task allocation
algorithm for multihop wireless networks (COTAM) is proposed
by modeling the problem of maximizing the network lifetime
as a linear programming (LP) problem. As the centralized
algorithm requires to know all the network parameters in
advance, COTAM is mostly restricted to offline optimization in
known environments. To extend the usability of the approach, this
work further proposes a distributed optimal task allocation algo-
rithm (DOTAM) based on Dantzig-Wolf decomposition. DOTAM
divides the centralized large-sized LP problem into small-sized
subproblems which are independently executed by each node.
The proposed COTAM and DOTAM are tested by applying both
the artificially generated applications and a realistic application.
The extensive results demonstrate that DOTAM achieves the same
performance as COTAM. Comparing with existing methods,
they provide significant improvements on extending the network
lifetime.

Index Terms—Multihop wireless networks, energy efficiency,
task allocation, network lifetime maximization, distributed opti-
mization.

I. INTRODUCTION

THE Internet of things (IoT) has been gaining vast atten-
tion from both academic and industrial communities. It

enables the physical objects to communicate with one another
to achieve specific objectives. One of the basic technologies to
proliferate the IoT applications is multihop wireless networks,
such as sensor networks or wireless ad-hoc networks [1], [2].
These networks consist of numbers of small-sized and low-cost
sensor nodes with specific sensors. In many applications, like
structural health monitoring [3] or video based surveillance
[4], the sensor nodes are required to not only act as indepen-
dent processing terminals but also collaborate with others to
execute computationally intensive tasks [5]. Due to the fact
that the sensor nodes are typically powered by battery energy,
the maximization of the network lifetime is always one of the
critical issues that need to be concerned.

As the sensor nodes may have different residual battery
energy and computing capacities, the allocation of the pro-
cessing tasks for them has a strong effect on the application
performance in terms of energy consumption. Moreover, many
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real-time applications require the tasks to be completed within
a limited period. Thus, the end-to-end execution time of the
applications should also be considered when assigning tasks
to the nodes. Consequently, it is crucial to design appropriate
task allocation algorithms for extending the network lifetime
while satisfying the execution time requirement.

Recent years have seen research progress on designing
task allocation algorithms for resource constrained wireless
networks. An optimal task allocation algorithm is proposed
in [6], it provides a static partition of the tasks to extend
the network lifetime. The authors in [7] develop a weighted
centralized task allocation algorithm, which provides dynamic
task allocation solutions for each node in the network. A
centralized heuristic algorithm is proposed in [8] to distribute
the tasks among the sensor nodes. In addition to the centralized
algorithm, a distributed optimal online task allocation algo-
rithm, DOOTA, is presented in [9] to maximize the network
lifetime using dynamic partitions. Each node can calculate
its own task allocation solutions with very light-weighted
computation. However, these works focus on one-hop-cluster
based wireless networks, which restricts their wide utilizations.
For multihop wireless networks, heuristic algorithms adopting
bionic intelligence are preferred, considering the simplicity
and easy implementation. A modified binary particle swarm
optimization (PSO) algorithm is designed in [10] to calculate
the task allocation solutions for extending the network lifetime.
The potential task allocation solutions are encoded as particles
with binary matrix formats. Similarly, the authors in [11]
present a task allocation algorithm based on discrete PSO.
In addition to PSO, the authors in [12], [13] focus on the
studies of genetic algorithm (GA) based methods to address
the task allocation problem. They model the complete parti-
tion solutions of the application as the binary chromosomes.
Nevertheless, these bio-inspired algorithms cannot guarantee
the global optimal solutions. Even worse, they need numerous
iterations to reach the better solutions, which could lead to a
long processing time [14], [15].

In order to address the limitations of the existing task allo-
cation algorithms, this paper proposes both a centralized and a
distributed optimal task allocation algorithms to maximize the
network lifetime while ensuring that the application execution
time is within the predefined period. Comparing with the
approaches in [6]–[9] which are limited to the one-hop-cluster
based simple network structure, the algorithms in this paper
are designed for more general multihop wireless networks.
Comparing with the bio-inspired methods in [10]–[13], the
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proposed task allocation algorithms need less computation
while providing the optimal dynamic partition solutions for
each node in the network. The main contributions of this paper
are summarized as follows:

● It models the energy consumption of sensor nodes and
the application execution time as linear functions of the
partitions. Then, a centralized optimal task allocation
algorithm (COTAM) is proposed by formulating the
problem of maximizing the network lifetime as a linear
programming (LP) problem. As a centralized algorithm,
COTAM is mostly applied for offline optimization in
known environment such as in industrial IoT.

● A distributed optimal task allocation algorithm (DOTAM)
based on Dantzig-Wolf decomposition theory is further
proposed to break through the limit of the centralized
algorithm. It divides the large-scaled centralized LP
problem into small-sized subproblems. Each sensor node
independently executes one subproblem to calculate the
optimal partition solutions.

The rest of this paper is organized as follows. Section II
presents the task and network models, the cost functions and
the definition of network lifetime. The proposed COTAM
algorithm is presented in Section III. In the next section, we
illustrate the detailed information of DOTAM algorithm. After
that, extensive simulation results are reported in Section V.
The last section summarizes this work.

For illustration purpose, this paper uses the bold notations to
represent arrays or matrices and the normal notations to stand
for the scalars, respectively. The frequently used symbols and
abbreviations are illustrated in Table I.

II. SYSTEM MODEL

This section presents the system models: the task and
network models, the cost functions of the wireless sensor
nodes and the definition of the network lifetime.

A. Task and Network Models

Typically, the mission of a wireless network for an ap-
plication consists of a set of dependent computation tasks
[6], [9], [12], which can be modeled by a Directed Acyclic
Graph (DAG). In a DAG, G = (V ,E), each vertex v ∈ V
represents one task of the application and connects with others
by directed edges; and each edge e ∈ E stands for the
communication from its source task to its direct destination
task. Each task is executed until it receives the data from all
of its predecessors, and then transmits the generated data to
its successors.

The network is composed of n wireless sensor nodes,
N1,⋯,Nn, and one sink node. Each sensor node is an individ-
ual source node with a specific sensor and has to periodically
execute its own application1. In addition to the abilities of
sensing, processing and transmitting, the sensor nodes can
also operate as routing nodes. The sensed source data or
processed data of the sender is propagated by multiple wireless
hops to the destination (sink node). Besides forwarding the

1This work can be directly extended for the scenarios that one node has
multiple sensors and executes different applications.

TABLE I: Frequently used symbols and abbreviations.

Notation Definition
tpi,k Execution time of node Ni for processing task vk .
Pi Average processing power of node Ni.
Epi,k Energy cost of node Ni for processing task vk .

eto,i/ero,i Transmitting/receiving overhead energy cost of Ni.
etx/erx Energy dissipated for transmitting/receiving 1 bit data.

Etx,i/Erx,i Transmitting/receiving energy cost of node Ni.
tto,i/tro,i Transmitting/receiving overhead time of node Ni.

Bi Bandwidth of node Ni.
Ttx,i/Trx,i Transmitting/receiving time of node Ni.

Ci The set of posterity nodes of node Ni.
Ey

i,i/Ey
i,j Energy cost of node Ni for DAG i/j at y-th round.

Ey
i Energy cost of node Ni at the y-th round.

Ey
s,i Energy cost of sink node for node Ni at y-th round.
Ey

s Energy cost of sink node at the y-th round.
Y /ψ Network lifetime/The reciprocal of network lifetime.
Xy

i Complete partition solutions of DAG i at y-th round.
Bati/Bats Battery energy of node Ni/sink node.
Xy

i,i/Xy
i,j Partition: tasks of DAG i/j assigned to node Ni.

Epi,i/Epi,j
The set of processing cost of tasks in DAG i/j when
they are executed by node Ni.

Li The set of net generated data of tasks in DAG i.
Ri,j/Rs,j The set of nodes on the path from Nj to Ni/sink.

T y
i Completion time of DAG i at the y-th round.

Tpr,i/Tps,i
The set of processing time of tasks in DAG i when
they are executed by node Nr/sink node.

Ki The number of tasks in DAG i.
DT

i Transpose of the incidence matrix of DAG i.
Ei/Es Average energy cost of Ni/sink node at each round.

χr,i
The set of probabilities of tasks in DAG i being
executed by node Nr .

λji Coefficient of j-th basic solution for i-th subproblem.
χ∗i /ρ∗i Optimal solution/objective value of i-th subproblem.

Φ The set of simplex multipliers for the subproblems.

C/DOTAM Centralized/Distributed optimal task allocation for
multihop wireless networks.

GA [12] Genetic algorithm.
DOOTA [9] Distributed optimal online task allocation.

data, the routing nodes can also share the processing tasks
of the sender. As the wireless transmission range is limited,
only the neighbor nodes within the transmitting range of the
sender are able to play the role of routing. The selection of
routing nodes depends on the specific routing algorithms, e.g.,
minimum hop routing [16], [17], geographic location based
routing [18], network experience based routing [19], etc. Note
that the selected routing algorithm does not affect the core of
our proposed methods. Once the routing path of each sensor
node is built, the multihop wireless network can be formed as a
tree structured network. Based on this, the proposed methods
can be executed in both centralized and distributed ways to
find the optimal task allocation solutions. The corresponding
illustration of the task allocation for tree structured networks
is shown in Fig. 1.

B. Cost Functions

In a multihop wireless network, each sensor node mainly
spends energy on processing, transmitting, receiving and sleep-
ing. As the sleeping power is typically very small [20], it is
neglected in this work.

The execution time of node Ni for processing task vk is
tpi,k = wk/fi, where wk is the computation workload of
task vk (the required number of CPU clock cycles) and fi
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Fig. 1: The illustration of the task allocation for a tree structured multihop wireless network.

is the processing speed of node Ni. Let Pi denote the average
processing power of node Ni, the corresponding processing
energy cost can be formulated by:

Epi,k = Pi tpi,k (1)

As the wireless communication process of a node includes
not only the data packets communication but also overhead
activities [6], the energy cost of node Ni for transmitting and
receiving L bits of data, Etx and Erx, can be expressed as:

Etx,i = eto,i + etxL (2)
Erx,i = ero,i + erxL (3)

where eto,i and ero,i are the transmitting and receiving over-
head cost of node Ni; etx and erx are the energy dissipated
by transmitting and receiving 1 bit of data, respectively. Note
that etx is typically a function associated with the transmission
distance. The corresponding durations of node Ni for trans-
mitting and receiving L bits of data are:

Ttx,i = tto,i +L/Bi (4)
Trx,i = tro,i +L/Bi (5)

where tto,i and tro,i are the overhead time of node Ni for
transmitting and receiving, respectively; Bi is the bandwidth
of node Ni.

C. Network Lifetime

Extending the network lifetime is one of the most important
issues in energy limited wireless networks. Network lifetime
can be defined based on different metrics, such as the number
of alive nodes, the coverage and connectivity of the network,
the quality of service, etc. [15]. Moreover, the combination of
these metrics has been used to define the network recently. For
example, in [21], the network is firstly divided into multiple
sleep-awake scheduled disjoint dominating sets, each of which
provides full coverage of the network; a dominating set dies
when the first node in it depletes the battery. The network
lifetime is then the summation of the lifetime of all the
dominating sets.

In many applications, e.g., mission critical applications,
every sensor node is equally crucial to the operation of the
network. Therefore, many existing references, e.g., [9], [12],
[22], define the network lifetime as the duration from the
network starts until the first node dies (1 out of n). In this
work, we also consider such kind of applications and adopt
this definition for the network lifetime.

III. CENTRALIZED OPTIMAL TASK ALLOCATION

This section firstly presents the problem statement of max-
imizing the network lifetime. It then proposes a Centralized
Optimal Task Allocation algorithm for Multihop wireless net-
works, COTAM, to solve the network lifetime maximization
problem based on linear programming (LP).

A. Problem formulation

As the sensor nodes periodically execute the applications
(DAGs), their lifetimes can be considered as the total number
of rounds of the complete execution of the DAGs. In order to
maximize the network lifetime, we aim to balance the energy
cost of each node using appropriate task allocation.

The energy cost of each node is associated with the par-
titions of the tasks of each application (DAG), i.e., the tasks
assigned to each node. Let Ci denote the set of nodes whose
paths to the sink node pass through node Ni, which means the
nodes in Ci are the posterity of node Ni. Taking Fig. 1 for
example, C7 = {N4,N5,N6}. As mentioned in Section II-A,
node Ni is able to play the role of routing and share the tasks
of its posterity in addition to the tasks of its own application,
DAG i. The energy cost of node Ni at the y-th round is:

Eyi = E
y
i,i + ∑

j∈Ci

Eyi,j (6)

where Eyi,i is the energy cost of node Ni for executing the
assigned tasks of its own DAG, which includes the cost of
processing and transmitting; Eyi,j is the energy spent by node
Ni for its posterity node Nj , which is made up of the cost
of receiving, processing the assigned tasks of DAG j and
transmitting. As the sink node is in charge of receiving the
data from all of the n sensor nodes and finishing the rest
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tasks of all DAGs, its energy cost at the y-th round can be
expressed by:

Eys =
n

∑
i=1

Eys,i (7)

where Eys,i is the energy cost spent by the sink node for node
Ni at the y-th round, which consists of the cost of receiving
and processing the assigned tasks of DAG i.

According to the network lifetime definition, the problem
of maximizing the network lifetime is to maximize the total
number of rounds of the DAGs execution, Y , by appropriately
assigning the tasks of each DAG to the sensor nodes and the
sink node. Let Xy

i denote the complete map of the tasks in
DAG i onto the sensor nodes and the sink node at the y-th
round. In other words, Xy

i is a set of partitions of the tasks
of DAG i. Consequently, the maximization problem is to find
the optimal Xy

i at each round to maximize Y , which can be
formulated by:

arg max
Xy

i

Y (8)

subject to:
Y

∑
y=1

Eyi ≤ Bati, i = 1,⋯, n

Y

∑
y=1

Eys ≤ Bats

and constraints of each DAG

where Bati and Bats are the corresponding battery energy
of node Ni and the sink node, respectively; the constraints
of DAG i include: Constraint a), the first (sensing) and last
tasks have to be executed by node Ni and the sink node,
respectively; Constraint b), the complete execution time of
DAG i has to be within the time limitation which is defined
by the users.

B. COTAM Algorithm

The COTAM algorithm is described in this section. It
formulates the problem Eq. (8) as a linear programming (LP)
problem and provides the optimal task allocation solution for
each node to maximize the network lifetime.

Since the battery energy of each node is constant, we focus
on linearly formulating the energy cost of the nodes. Firstly, a
binary variable xi,k is used to represent the relation between
node Ni and task vk: xi,k = 1 indicates task vk is assigned
to node Ni; otherwise xi,k = 0. Then, the tasks of DAG j
assigned to node Ni can be expressed by the so-called partition
Xi,j = [xi,1,⋯, xi,Kj ]T , where Kj is the number of tasks in
DAG j. The energy cost of node Ni for executing the tasks
of its own application DAG i at the y-th round, i.e., Eyi,i in
Eq. (6), is made up of the cost for processing the assigned tasks
and transmitting data to its direct routing node. According to
Eqs. (1) and (2), Eyi,i can be formulated as:

Eyi,i = Epi,iX
y
i,i + eto,i + etxLiX

y
i,i (9)

where Epi,i = [Epi,1,⋯,Epi,Ki] represents the processing cost
of each task in DAG i when they are executed by node Ni;

Li = [li,⋯, lk,⋯, lKi] stands for the net generated data of each
task in DAG i, and lk is the difference between the generated
data and the input data of task vk. The energy cost of node
Ni for its posterity node Nj , i.e., Eyi,j in Eq. (6), consists of
the cost of receiving the data, processing the assigned tasks
and transmitting the generated data. Let Ri,j denote the set of
nodes on the path from Nj to Ni (Ni is not included). Taking
Fig. 1 for instance, R7,4 = {N4,N6}. The amount of data that
node Ni received and transmitted for DAG j are formulated
by Lj∑r∈Ri,j

Xy
r,j and Lj(Xy

i,j +∑r∈Ri,j
Xy
r,j), respectively.

Consequently, Eyi,j can be given by:

Eyi,j =ero,i + erxLj ∑
r∈Ri,j

Xy
r,j +Epi,jX

y
i,j

+ eto,i + etxLj(Xy
i,j + ∑

r∈Ri,j

Xy
r,j) (10)

As the energy cost spent by the sink node for node Ni, i.e.,
Eys,i in Eq. (7), consists of receiving the data of DAG i and
executing the rest tasks, it can be calculated by:

Eys,i = ero,s + erxLi ∑
r∈Rs,i

Xy
r,i +Eps,i(1 − ∑

r∈Rs,i

Xy
r,i) (11)

According to Eqs. (6), (7) and (9) to (11), the energy cost
of node Ni and the sink node at the y-th round, Eyi and
Eys , are standard linear functions associated with the partitions
Xy
r,i, r ∈Rs,i.
DAG i is completed by the collaboration of nodes in Rs,i,

i.e., sensor node Ni and its routing nodes, and the sink node.
Therefore, the completion time of DAG i at the y-th round,
T yi , is expressed by:

T yi =∑
r∈Rs,i

((tro,r +
Li
Br
∑

j∈Rr,i

Xy
j,i)η + tto,r +

Li
Br

(Xy
r,i +∑

j∈Rr,i

Xy
j,i)

+ Tpr,iXy
r,i) + tro,s +

Li
Bs
∑

r∈Rs,i

Xy
r,i + Tps,i(1 −∑

r∈Rs,i

Xy
r,i) (12)

where Tpr,i = [tpr,1,⋯, tpr,Ki] and Tps,i = [tps,1,⋯, tps,Ki]
represent the processing time of each task in DAG i when
they are executed by node Nr and the sink node, respectively;
η = 0 when r = i, otherwise η = 1, because sensor node Ni
does not need to receive any data from DAG i. It is obvious
that Eq. (12) is also a standard linear equation associated with
the partitions Xy

r,i, r ∈Rs,i.
Based on the linear Eqs. (6), (7) and (9) to (12), the original

maximization problem Eq. (8) can be formulated by a binary
integer LP (BILP) problem as follows:

arg max
Xy

r,i,r∈Rs,i

Y, i = 1,⋯, n (13)

subject to:
Y

∑
y=1

Eyi ≤ Bati (14)

Y

∑
y=1

Eys ≤ Bats (15)

1 ≤ 1 ∑
r∈Rs,i

Xy
r,i ≤Ki − 1 (16)

DT
i ∑
r∈Rs,i

Xy
r,i ≧ 0 (17)

T yi ≤ tli (18)



IEEE SENSORS JOURNAL, 2019 5

where Eqs. (16) and (17) are the linear formulation of Con-
straint a as mentioned in Section III-A; DT

i is the transpose
of the incidence matrix of DAG i, which has the row for
each task and column for each edge (Di(v, e) = 1 if edge
e leaves task v, Di(v, e) = −1 if edge e enters task v
and Di(v, e) = 0 otherwise); Eq. (18) represents the linear
formulation of Constraint b, in which tli is the execution time
limitation of DAG i defined by the users. By solving the above
BILP problem, the network lifetime can be maximized with the
partition Xy

r,i in every round. However, it is very hard to solve
this problem, because: i) BILP is a non-convex optimization
problem with high complexity; ii) The number of variables is
Y ∑ni=1Ki∣Rs,i∣, where the network lifetime Y is usually very
large (can be hundreds of thousands) and ∣ ⋅ ∣ is the cardinality
of the set.

Towards the above-mentioned problem, the COTAM al-
gorithm is proposed by converting the non-convex BILP to
a convex LP optimization problem with fixed number of
variables. According to the definition of the network lifetime,
the optimization problem is to maximize the minimum lifetime
among the nodes. The lifetimes of the sink node and sensor
node Ni can be expressed by Bats/Es and Bati/Ei, where
Es and Ei denote the average energy cost of the sink node
and sensor node Ni at each round, respectively.

Based on Eqs. (7) and (11), Es can be given by:

Es =
1

Y

Y

∑
y=1

n

∑
i=1

Eys,i

=
n

∑
i=1

(ero,s + erxLi∑
r∈Rs,i

χr,i +Eps,i(1 −∑
r∈Rs,i

χr,i)) (19)

where

χr,i =
1

Y

Y

∑
y=1

Xy
r,i. (20)

As Y is very large and each element in Xy
r,i equals either

1 or 0, the element in χr,i can be treated as a real number
between 0 and 1, which indicates the probability of each task
being executed by the sensor nodes. Accordingly, based on
Eqs. (6), (9) and (10), Ei is given by:

Ei = Epi,iχi,i + eto,i + etxLiχi,i + ∑
j∈Ci

(Epi,jχi,j (21)

+ ero,i + erxLj ∑
r∈Ri,j

χr,j + eto,i + etx,iLj(∑
r∈Ri,j

χr,j +χi,j))

As each element in χr,i is a real number, based on Eqs. (19)
and (21), maximizing the network lifetime can be formulated
by a LP problem as follows:

arg min
χr,i,r∈Rs,i

max{ Es
Bats

,
Ei
Bati

∣ i = 1,⋯, n} (22)

subject to: 1 ≤ 1 ∑
r∈Rs,i

χr,i ≤Ki − 1

DT
i ∑
r∈Rs,i

χr,i ≧ 0

The optimal partition solution χr,i for each node to maximize
the network lifetime can be obtained by solving the above
COTAM algorithm. Note that the obtained χr,i consists of

different partitions with the corresponding weights, which
can be easily calculated. For example, χr,i = [1,0.2,0,0]
corresponds to partition solutions [1,1,0,0] and [1,0,0,0]
with weights 20% and 80%, respectively. Comparing with
the BILP problem Eq. (13), COTAM significantly reduces the
complexity because: i) It transforms a non-convex optimization
into a convex LP optimization; ii) It reduces the number of
variables from Y ∑ni=1Ki∣Rs,i∣ to ∑ni=1Ki∣Rs,i∣.

IV. DISTRIBUTED OPTIMAL TASK ALLOCATION

Although the centralized COTAM can provide the optimal
task allocation solutions, it is frequently unrealistic to know
all the parameters in advance; it also requires a large amount
of battery and computation resources to execute the complex
computation, i.e., Eq. (22). Therefore, COTAM is mostly
applied for offline optimization in known environments as
in partial cases of industrial IoT. To extend the usability of
the approach, this section proposes a Distributed Optimal
Task Allocation algorithm for Multihop wireless networks,
DOTAM, based on Dantzig-Wolf (D-W) decomposition. It
solves the centralized problem in a distributed way and pro-
vides the same optimal solutions as COTAM. This section
firstly reviews the background of D-W decomposition and then
presents DOTAM algorithm.

A. Dantzig-Wolf Decomposition

The key underlying theory of DOTAM algorithm is D-W
decomposition. For a large scale LP problems with special
block-angular structured constraints, D-W can divide it into
small sized subproblems connected with one master problem
[23], [24]. Solving the transformed problem is equivalent to
addressing the original centralized LP problem. The solutions
are calculated iteratively by D-W, where the subproblems are
solved and coordinated at each step, and ultimately the overall
problem is solved.

Considering a centralized LP with the following format:

arg min
zi
fT1 z1 +⋯,+fTi zi +⋯,+fTn zn (23)

subject to:

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

G1 G2 ⋯ Gn

A1

A2

⋱
An

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎣

z1
z2
⋮
zn

⎤⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

b0
b1
b2
⋮
bn

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
zi ≧ 0, i = 1,⋯, n

where zi represents the set of variables of the i-th subproblem;
G1,⋯,Gn are the coefficient matrices for the global equality
constraints; A1,⋯,An are the coefficient matrices for the n
subproblems, which are independent with each other. Note that
inequality equations can be converted into equalities by adding
slack variables [24]. For the i-th subproblem, min fTi zi, s.t.
Aizi = bi, the constraint set is a polytope. According to
the convex combination property that any point in a polytope
can be expressed by the convex combination of the vertices
(extreme points), zi can be written as:
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zi =
Mi

∑
j=1

λjiz
j
i (24)

where zji , j = 1,⋯,Mi are the Mi extreme points of the i-th
polytope; λji ≥ 0 are the corresponding weighting coefficients,
which satisfy ∑Mi

j=1 λ
j
i = 1. By using Eq. (24), Eq. (23) is

equivalent to the master problem:

arg min
λj
i

n

∑
i=1

Mi

∑
j=1

fTi z
j
i λ
j
i (25)

subject to:
n

∑
i=1

Mi

∑
j=1

Giz
j
i λ
j
i = b0

Mi

∑
j=1

λji = 1, λji ≥ 0

The above master problem can be written as matrix format:

arg min
λ

ΓTλ (26)

subject to:Qλ = b,λ ≧ 0

where ΓT = [fT1 z11 ,⋯,fT1 zM1

1 ,⋯,fTn zMn
n ], λ = [λ11,⋯,

λM1

1 ,⋯, λMn
n ]T , the column of Q associated with λji is

[Giz
j
i ,ei]T in which ei denotes the i-th unit vector in En,

and b = [bT0 ,1,⋯,1]T .
Suppose an extreme point for the master problem, zB , is

known, the corresponding basis matrix QB (a square matrix
with the same number of rows asQ) and ΓTB can be calculated.
The master problem then generates simplex multipliers Φ by:

Φ = ΓTBQ
−1
B , (27)

and sends to each subproblem to solve:

ρ∗i = arg min
zi

(fTi −Φ0Gi)zi − φm+i (28)

subject to: Aizi = bi, zi ≧ 0

where Φ0 and φm+i are the first m elements and the m + i
element of Φ, respectively, with m being the number of rows
of Gi. The optimal solution for Eq. (28), z∗i , is one of the
extreme points, i.e., z∗i ∈ zji ∣j = 1,⋯,Mi. If the objective
value of Eq. (28) ρ∗i < 0, applying z∗i can reduce the objective
value of the master problem Eq. (25). Thus, z∗i will be added
to the solution of the master problem. Meanwhile, QB and
ΓTB of the master problem are updated by using the column
in Q associated with z∗i and fTi z

∗

i to replace one column
of QB and one element in ΓTB , respectively, through pivot
operation [23], [24]. If all ρ∗i ≥ 0, i = 1,⋯, n are nonnegative,
the objective value of the master problem cannot be further
decreased and the current solutions of the subproblems are
optimal for the master problem.

B. DOTAM Algorithm

Based on D-W decomposition, this section presents the
DOTAM algorithm. Let ψ = 1/Y represent the reciprocal of
the network lifetime and χi = [χTr,i∣r ∈ Rs,i]T . Based on

Sub 1:

Sub 2:

Sub i:

Sub n:

Master
problem

Fig. 2: The diagram of DOTAM algorithm based on D-W
decomposition.

Eqs. (19) and (21), the network lifetime maximization problem
Eq. (22) can be rewritten as:

arg min
ψ,S,χi

ψ (29)

subject to:
n

∑
i=1

Giχi − 1ψ +S = b0 (30)

Aiχi ≦ bi (31)

where 1 is a column vector with all n + 1 elements being
1; S is a column vector with n + 1 nonnegative slack vari-
ables s0, s1,⋯, sn; the derivations of Gi, b0, Ai and bi are
illustrated in Appendix. It is obvious that Eq. (29) exactly fits
the D-W format with the global equality constraints Eq. (30)
and the independent inequality constraints Eq. (31) for each
subproblem. Let us assume that we have already known the
extreme points of each subproblem, according to the Eqs. (24)
to (26), the above problem can be reformulated as a master
problem:

arg min
ψ,S,λ

ψ (32)

subject to: Q[ψ, s0,⋯, sn, λ11,⋯, λM1

1 ,⋯, λMn
n ]T = b

whereQ = [−1 I G1χ
1
1 ⋯ G1χ

M1

1 ⋯ Gnχ
Mn
n

0 0 e1 ⋯ e1 ⋯ en
], I

is an identity matrix; and b = [bT0 ,1]T .
When using DOTAM, the master problem is solved by the

sink node and the subproblems are independently executed by
each sensor node as shown in Fig. 2. Before DOTAM starts,
a basis QB should be initialized: the sink node initializes
one extreme point for each subproblem namely χ1

i with
λ1i = 1 by considering each sensor node just executes the
first task of its own DAG and all the rest are done by the
sink node, and sets s0 = 0; the columns of Q associated
with ψ, s1,⋯, sn, λ11,⋯, λ1n construct the initial QB , and the
corresponding weights are calculated by W =Q−1

B b. Note that
sink node stores only Q−1

B and W .
After the initialization, the sink node generates the simplex

multiplier Φ and broadcasts to the sensor nodes. As only the
coefficient of ψ is non-zero, based on Eq. (27), Φ is actually
the first row of Q−1

B . Based on Φ, sensor node Ni starts to
solve its own subproblem to calculate ρ∗i . Since the coefficient
of χji in Eq. (32) is 0, node Ni only needs to solve the i-th
subproblem:
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ρ∗i = arg min
χi

−Φ0Giχi − φm+i (33)

subject to: Aiχi ≤ bi, χi ≧ 0

The obtained ρ∗i and the corresponding χ∗i are sent to the sink
node. When the sink node receives these data, it selects the
minimum ρ∗i . For notational simplicity assume that ρ∗i is the
minimum. If ρ∗i < 0, sink node generates a new column Nc
to enter Q−1

B using the associated χ∗i as follows:

Nc =Q−1
B [Giχ

∗

i

ei
] (34)

Then, sink node updates Q−1
B and W through pivot operation

as introduced in [23], [24]. If ρ∗i ≥ 0, DOTAM stops and
the sink node broadcasts a confirm message to indicate the
current extreme points with the corresponding weights are the
optimal partition solutions.

The pseudo codes of DOTAM executed in sink node and
sensor node Ni are shown in Algorithm 1 and Algorithm 2.
The subproblems are solved by each sensor node indepen-
dently and the sink node confirms the results by checking
the master constraint. DOTAM provides the same solution
as solving the original equivalent large-scaled LP problem
using COTAM. DOTAM divides the original LP problem
with ∑ni=1Ki∣Rs,i∣ variables into n small-sized subproblems.
Each subproblem has Ki∣Rs,i∣ variables and can be solved
individually by resource limited sensor node Ni to obtain the
partition solution of DAG i.

Algorithm 1 Sink node algorithm

1: Initialize Q−1
B and W

2: Loop:
3: Calculate Φ (first row of Q−1

B ) and broadcast it
4: Receive ρ∗i and χ∗i from each node
5: if min{ρ∗i ∣i = 1,⋯, n} ≥ 0 then
6: Broadcast confirm
7: end loop
8: else
9: Generate Nc using Eq. (34)

10: Update Q−1
B and W using Nc

11: end if

Algorithm 2 Node Ni algorithm

1: if receive confirm then
2: Break
3: else if receive Φ then
4: Calculate ρ∗i and χ∗i using Eq. (33)
5: Transmit to sink node
6: end if

V. SIMULATION RESULTS

In this section, extensive simulations are employed to eval-
uate the performance of COTAM and DOTAM algorithms
using both artificially generated applications and a realistic
application. In order to illustrate their advantages, the simu-
lation results are compared with the non-scheduling strategy,

DOOTA algorithm proposed in [9] and a Genetic Algorithm
(GA) based task allocation algorithm proposed in [12]:

● Non-scheduling strategy: each sensor node just executes
the first task of its own DAG and directly forwards the
data of its posterity nodes; all the rest tasks are done by
the sink node.

● DOOTA [9]: as DOOTA provides the optimal solution
for one-hop-cluster based networks, it is executed by
considering that each node connects with the sink node
by one wireless hop in this paper.

● GA [12]: a set of chromosomes (static task allocation
solutions) iteratively generate the next generation by
inheritance, crossover and mutation, until reaching the
maximum number of iterations.

A. Simulation Setup

The network is generated with n sensor nodes randomly
located in a two dimensional network area of 200 × 200 square
meters and 1 sink node at the center. The maximum transmis-
sion range of each node is 40 meters. Each node transmits data
to the sink node using the minimum hop routing algorithm
[16], [17]. The battery energy of the wireless nodes and sink
node are distributed within the ranges of [1kJ,5kJ] and
[10kJ,20kJ], respectively. Besides, we consider the nodes
execute the same application in the network.

The energy related parameters of the wireless nodes and the
sink node in the networks are obtained from the datasheets
of CC2538 system-on-chip [20] and the Texas Instruments
TMS320C5509A [25], respectively. All of the nodes are
considered to use the same RF module which works at the
2.4GHz ISM band with a bandwidth of 250 Kbps.

Each reported simulation result corresponds to the average
values and the standard deviations of 500 test instances.

B. Simulation Results on Artificial Applications

This section evaluates the performance of COTAM and
DOTAM using the artificial applications. The corresponding
DAGs are randomly generated based on the number of tasks
and edges. The computation workload of each task is dis-
tributed within the range of [100,1000] kilo clock cycles
(KCCs). The amount of communicated data on each edge is
distributed in the range of [100,500] bits. The increase of
network lifetime with respect to the non-scheduling strategy
and the algorithm runtime measured by executing them in
Matlab are investigated by changing: a) The number of sensor
nodes, n; b) The number of tasks, K. The configuration
parameters are summarized in Table II, and only one parameter
is changed in each experiment.

TABLE II: Configuration parameters.

Parameters Values
Default Varied

Number of nodes, n 20 {10, 20, 30, 40, 50}
Number of tasks, K 10 {5, 10, 15, 20}

The first set of simulations is conducted to investigate the
effect of the number of sensor nodes, n, on the algorithm
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performance. It can be easily seen from Fig. 3a that the
improvements of the network lifetime by using the task allo-
cation algorithms, with respect to the non-scheduling strategy,
increase as n changes from 10 to 50. For instance, DOTAM
extends the network lifetime on average by a factor of 2.92 and
up to 9.65 times. This is because the task allocation algorithms
can appropriately distribute the workload for the sensor nodes
and the sink node, while the non-scheduling strategy leads the
sink node exponentially overloaded and consequently causes
a short network lifetime. As we expected, among the four
algorithms, DOTAM extends the network lifetime as much as
COTAM. Since both of them provide the optimal solutions,
they increase the network lifetime the longest. Meanwhile,
GA performs the worst, because it cannot fairly balance
the workload distribution with one static partition for each
node. Moreover, the superiority of COTAM and DOTAM over
DOOTA is more significant as n increases, e.g., COTAM
and DOTAM extend the network lifetime from 108.15% to
128.32% longer than DOOTA. The reason is that large number
of nodes results in many wireless hops, while DOOTA only
considers that the sensor nodes connect with the sink node
by one hop. Consequently, the proposed algorithms perform
better for network with more sensor nodes.

Further on, Fig. 3b shows that the time requirements for
executing the task allocation algorithms. It is obvious that
executing GA requires the longest time, which needs on
average 38.24 seconds when there are 50 nodes. This is due
to the fact that GA is an iterative algorithm and needs a
large number of iterations for a good solution. An interesting
observation is that executing the DOTAM algorithm needs
more time than executing COTAM. This indicates that the cen-
tralized algorithm can be efficiently solved by some efficient
solvers, e.g., Matlab. Thus, in some indutrial IoT scenarios
with known environments, e.g., smart robotics, intelligent
machine status monitoring, etc., it is better to use COTAM. In
contrast, DOTAM can be applied in more general scenarios,
where it is unrealistic to know all the network parameters
in advance. Moreover, the runtime of COTAM and DOTAM
slight increases as n changes from 10 to 50. The average
runtime of DOTAM is within 0.5 seconds. Therefore, the
overhead for executing the proposed algorithm is tolerant for
small-to-medium sized wireless networks.

In addition to estimate the effect of the number of sensor
nodes, another set of simulations is conducted to investigate
the algorithm performance by changing the number of the
tasks. As demonstrated in Fig. 4a, the average gains of the
network lifetime improvement by using COTAM, DOTAM
and DOOTA algorithms slightly increase while the gain of GA
fluctuates, when the number of tasks, K, changes from 5 to 20.
This is because that GA cannot guarantee the optimal partition
solutions. Moreover, it can be seen that the superiorities of
COTAM and DOTAM over DOOTA decrease. Specifically,
they extend the network lifetime on average from 1.25 to
1.14 times longer than DOOTA, when K increases from 5 to
20. The reason is that the effect of multihop communication
cost on DOOTA declines as the number of computation tasks
increases.

Moreover, Fig. 4b depicts the execution time of the task
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Fig. 3: Effect of the number of nodes on the performance
of COTAM, DOTAM, GA [12] and DOOTA [9] algorithms
(there are 10 tasks in each artificially generated application):
(a) network lifetime increase w.r.t. non-scheduling strategy;
(b) algorithm runtime.

allocation algorithms with the increasing number of tasks, K.
It is visible that the algorithm runtime of COTAM apparently
grows while the runtime of the others slightly increase or
even keep stable, when K changes from 5 to 20. This can be
explained by the fact that the number of variables in COTAM
algorithm is proportional to nK. As a result, the increase of
execution time of COTAM is much more significant than the
others.

C. A Case Study Using Realistic Applications

This section uses a realistic in-network processing applica-
tion, maximum entropy power spectrum computation (MEPS)
[26], [27], as a case study to further evaluate the algorithm
performance. Fig. 5 depicts the modeled DAG of the MEPS
application. The corresponding execution time of each task
related to CC2538 system-on-chip and TMS320C5509A hard-
wares are shown in Table III. We consider that the network is
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Fig. 4: Effect of the number of tasks in each artificially gen-
erated application on the performance of COTAM, DOTAM,
GA [12] and DOOTA [9] algorithms (there are 20 sensor
nodes in the network): (a) network lifetime increase w.r.t. non-
scheduling strategy; (b) algorithm runtime.
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Fig. 5: DAG of MEPS application.

randomly generated with 20 sensor nodes and one sink node
as presented in Section V-A.

Fig. 6 illustrates the performance of the task allocation
algorithms when each sensor node executes MEPS application.
As shown in Fig. 6a, both COTAM and DOTAM perform the
best as expected. They achieve on average 4.04 times longer
network lifetime with respect to the non-scheduling strategy.
Comparing with DOOTA algorithm, the gains of COTAM and
DOTAM are almost doubled. The reason is that the effect
of multihop communication using MEPS is larger than that
using artificially generated applications, which makes DOOTA

TABLE III: Execution time of tasks in the DAG of MEPS
application.

Tasks Number of
iterations

Ave. exe. time
(sec.) on CC2430,

32MHz CLK

Ave. exe. time on
TMS320C5509A,

200MHz CLK
SRC 512 7.92E-5 4.64E-6
ACL 1 1.65 1.24E-1

LEVD 1 0.56 5.91E-6
ARRAYA 1 6.83E-5 1.62E-6
ARRAYE 1 1.01E-5 7.0E-8
REPEAT 1 8.77E-4 2.95E-5
CHOP 1 1.24E-3 4.69E-5
FFT 1 0.23 4.81E-3
ABS 256 4.46E-5 2.6E-5

SQUARE 256 1.5E-5 9.05E-7
MUL 256 1.93E-5 2.9E-6
DB 256 2.26E-5 2.66E-5

1

2

3

4

5

6

Task allocation algorithms

N
et

w
or

k
lif

et
im

e
in

cr
ea

se

DOOTA [9] GA [12]
COTAM DOTAM

(a)

10−3

10−2

10−1

100

101

102

Task allocation algorithms

A
lg

or
ith

m
ru

nt
im

e
(s

ec
.)

DOOTA [9] GA [12]
COTAM DOTAM

(b)

Fig. 6: A case study using realistic MEPS application to
estimate the performance of COTAM, DOTAM, GA [12] and
DOOTA [9] algorithms (there are K = 12 tasks in MEPS
application as shown in Fig. 5, and the network is generated
with 20 sensor nodes): (a) network lifetime increase w.r.t. non-
scheduling strategy; (b) algorithm runtime.
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perform worse. Regarding the execution time of the algorithms
when applying MEPS application, the results are similar to the
artificially generated applications as shown in Fig. 6b. DOOTA
still needs the least execution time. The runtime of DOTAM
is a little larger than COTAM, and both of them are less than
0.5 seconds. The results of this case study are consistent with
Figs. 3 and 4.

VI. CONCLUSION

This work aims to extend the network lifetime of multi-
hop wireless networks by appropriately distributing the tasks
for each node. Firstly, a centralized optimal task allocation
algorithm, COTAM, is proposed by modeling the problem of
maximizing the network lifetime as a linear programming (LP)
problem. It provides the optimal task allocation solutions for
each node. Moreover, this work further presents a distributed
optimal task allocation algorithm, DOTAM. Based on Dantzig-
Wolf (D-W) decomposition, DOTAM divides the centralized
large-sized LP problem into small-sized subproblems which
are executed by each node. The proposed COTAM and
DOTAM are tested by applying both the artificially generated
applications and a realistic MEPS application. The results
demonstrate that both COTAM and DOTAM provide the same
optimal task allocation solutions and significantly outperform
the existing algorithms on extending the network lifetime.

As COTAM is a centralized algorithm, it needs to know all
of the network parameters in advance. Therefore, COTAM is
mostly applied for offline optimization in known environments
as in partial cases of industrial IoT scenarios, e.g., smart
robotics, intelligent machine status monitoring, etc. Moreover,
the results provided by COTAM can be treated as a metric
to evaluate the other approaches. For the general scenarios in
which it is hard or even unrealistic to know all the network
parameters in advance, it is better to apply DOTAM for the
online optimization to achieve the optimal task allocation
solutions.

APPENDIX

Derivation of Gi, Ai, b0 and bi in Section IV-B:
Gi is a matrix with n+1 rows. The first row of Gi consists

of NRs,i elements and can be represented by:

Gi(1, ∶) = [
NRs,i

³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
erxLi −Eps,i,⋯, erxLi −Eps,i]

where NRs,i is the number of nodes in Rs,i, i.e., the number
of sensor nodes on the path from node i to the sink node. The
i + 1 row of Gi is:

Gi(i + 1, ∶) = [Epi,i + etxLi,
NRs,i−1
³¹¹¹¹¹¹¹·¹¹¹¹¹¹µ
0,⋯,0 ]

The j + 1 row (j ∈ 1,⋯, n, and j ≠ i) of Gi is:

Gi(j + 1, ∶) =
⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

[

NRj,i

³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
(erx + etx)Li,⋯, (erx + etx)Li,Epj,i + etxLi], j ∈Rs,i

[
NRs,i

³¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹µ
0, ⋯, 0], otherwise

Taking Fig. 1 for example, the corresponding G1 is a matrix
with n + 1 rows and can be presented as:

G1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

erxL1 −Eps,1, erxL1 −Eps,1, erxL1 −Eps,1
Ep1,1 + etxL1, 0, 0
(erx + etx)L1, Ep2,1 + etxL1, 0
(erx + etx)L1, (erx + etx)L1, Ep3,1 + etxL1

0, 0, 0
⋮ ⋮ ⋮
0, 0, 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
b0 is a column vector with n+1 elements. The first element

of b0 is:

b0(1) = −
n

∑
i=1

(ero,s +Eps,i1)

The i + 1 element (i = 1,⋯, n) of b0 is:

b0(i + 1) = −eto,i −NCi(ero,i + eto,i)

where NCi is the number of posterity nodes of node i, i.e.,
the length of the set Ci. Let us still take Fig. 1 for instance,
the corresponding b0 is:

b0 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−∑ni=1(ero,s +Eps,i1)
−eto,1

−eto,2 − (ero,2 + eto,2)
−eto,3 − 2(ero,3 + eto,3)

⋮

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
As Ai and bi can be easily derived from the constraints of

Eq. (22), here we do not present the detailed information.
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