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Abstract—Complex wireless sensor network (WSN) applica-
tions as those in Internet-of-Things or in-network processing
are pushing the requirements for energy efficiency and data
processing drastically. Energy-aware task allocation becomes
crucial to efficiently distribute the tasks of the applications for
the nodes to extend the network lifetime. In this paper, we
propose a distributed optimal on-line task allocation (DOOTA)
algorithm, by considering the energy cost of communicating,
computing, sensing and sleeping activities, to optimally balance
the workload distribution among the sensor nodes. Through an
in-depth analysis, this work proves that the optimal partition
solution for each node consists of at most 2 partition cuts
with the corresponding weights. This observation enables the
proposed on-line algorithm to maximize the network lifetime with
low execution complexity. The simulation results show that our
proposed algorithm extends the network lifetime by 12.26 times
compared with the strategy of no scheduling, which is 2.22 times
more than previous off-line task allocation methods. Moreover,
the energy spent on executing the on-line algorithm is so small
that it can be neglected.

Index Terms—Wireless sensor networks (WSNs), energy effi-
ciency, workload scheduling, task allocation, network lifetime,
on-line optimization.

I. INTRODUCTION

W IRELESS sensor networks (WSNs) have been applied
to a wide variety of applications with vastly vary-

ing requirements and characteristics. Energy efficiency is a
primary concern in almost any WSN application: the nodes
in WSNs are usually supplied by the limited battery power,
and it is hard to recharge or replace the dying nodes due to
large quantities or the harsh physical environments, which
would lead to fragmentations of the network and loss of
potentially critical information. Therefore, many research and
industrial communities are devoted to studying how to achieve
the energy efficiency and extend the WSN lifetimes.

In traditional WSN applications, the workloads are simple
and wireless communication is usually the most energy inten-
sive process. Specifically, a single bit transmission requires
1000 times the energy cost of a 32-bit computation in a
classical architecture [1]. Thus, most of the previous researches
mainly focus on reducing the communication cost. For exam-
ple, energy efficient clustering and routing approaches have
been proposed to conserve communication energy by reducing
the transmission distance and balancing the transmission loads
within the clusters [2]–[4]; alternatively, there are numerous
compression-based techniques that either focus on reducing
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the volumes of the transmitting packets [5]–[8] or aim to
decrease the transmission rate to achieve the energy efficiency
[9]–[11]; also a large number of sleep/wakeup schemes have
been studied to reduce the energy spent on idle states of the
radio component [12], [13].

However, the energy consumption of sensing and compu-
tation are not insignificant any more, as more complex WSN
applications, e.g., in Internet-of-Things or in-network process-
ing scenarios, appear in the past decade. The sensing cost of
several off-the-shelf sensors, like the TDA0161 of STM or the
CP18, VL18 produced by VISOLUX, are significantly larger
than the communication cost [14]. Processing a vast amount of
data or executing complex algorithms makes the computation
cost comparable with or even larger than the communication
cost. For instance, the computation of ECDH-ECDSA requires
5 times more energy than the communication on MICAz node
[15]. Thus, to efficiently maximize the network lifetime, it
is necessary to balance the energy cost of nodes by simul-
taneously taking the workload of sensing, computation and
communication tasks of the given applications into account.

Energy-aware task allocation can efficiently solve the work-
load balance problem. Although numerous task allocation
approaches have been studied in previous wired networks [16],
[17], they cannot be directly applied to WSNs due to the
limited battery energy and the special wireless communication
mechanism. The design of task allocation approaches for
WSNs is an ongoing research. It is attracting significant
attentions [18]–[26]. One the one hand, studies aim to select
the appropriate groups of nodes to cooperatively complete a
global application, typically using bio-inspired meta-heuristic
algorithms, e.g., particle swarm optimization (PSO) [18], [19],
genetic algorithm (GA) [20], [21], etc. In [18], a modified
version of binary PSO (MBPSO) is designed for the allocation
of multiple computationally intensive tasks for WSNs; [19]
proposes a fault-tolerant task allocation algorithm (FTAOA)
based on discrete PSO (DPSO) to support the fault tolerance
of workload allocation. The common drawback of the PSO
based algorithms is that they would easily get stuck in local
optimum. The authors in [20], [21] focus on the research of
GA based approaches to address the workload distribution
problems. Although the modified versions of GA have high
probability to obtain the optimal solution, numerous genera-
tions are needed which takes long time sometimes even several
days. An additional issue is the lack of real applications in the
evaluation of the above mentioned works. On the other hand,
task allocation approaches for the scenarios that each node
has to execute an individual application are studied, which are
designed targeting at real applications [22]–[26]. The authors
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in [22], use an exhaustive search method to optimally distribute
the workload of the tasks for real applications with a static
partition cut for the nodes. Due to the complexity of the
exhaustive algorithms, heuristic algorithms are designed to
reduce the complexity [23], [24], but they cannot reach the
optimal solutions and are restricted to symmetrical networks.
An optimal task allocation scheme based on integer linear
programming algorithm is proposed by [25] to maximize
the network lifetime. This approach is later on improved
by [26], which provides the dynamic partition scheduling to
further prolong the lifetime. Nevertheless, most of the existing
approaches for real applications are centralized algorithms and
are preferred to be executed off-line due to the computational
complexity. They require to know all the network parameters
in advance. It is very hard or even impossible to satisfy this
requirement in realistic WSN scenarios. Even if the parameters
can be obtained beforehand, the changes of the networks,
like network sizes or positions of the nodes, make the off-
line schemes inefficient. Thus, efficient on-line task allocation
algorithms are strongly required.

This work proposes a distributed optimal on-line task allo-
cation (DOOTA) algorithm to maximize the network lifetime,
targeting at the real applications. It enables each slave to
parallelly calculate its own workload distribution solution with
very lightweight complexity. The main contributions of this
work are:
• It models the workload distribution problem of a given

WSN application as a SDF graph partition problem, and
systematically formulates the energy consumption and the
time constraints of the nodes in WSNs.

• It proves that using at most 2 partition cuts with the
corresponding weights for each node is enough to achieve
the maximum network lifetime, and finds the possible
partition cuts based on the binary decision diagram
(BDD) theory.

• To the best of our knowledge, it is the first work that
proposes an optimal on-line task allocation algorithm for
multi-partition schedules to flexibly respond the dynamic
changes of WSNs, i.e., network size or positions of the
nodes.

The rest of this paper is organized as follows. Sec. II models
the workload distribution problem, the energy consumption
and the time latencies of the nodes in WSNs. In Sec. III,
we firstly introduce the problem of the network lifetime
maximization and prove that the optimal solution is always
made up of at most 2 partition cuts; then the DOOTA algorithm
is proposed. The simulation results are reported in Sec. IV. We
summarize our work in Sec. V.

II. MODELING THE WORKLOAD DISTRIBUTION AND
ENERGY CONSUMPTION FOR CLUSTER-BASED WSNS

This work focuses on cluster-based WSNs as shown in
Fig. 1, since current studies have already proved that such
hierarchical architectures increase the network scalability and
lifetime efficiently [2], [27]. For a given WSN, it can be
firstly grouped into numbers of clusters according to clustering
approaches as in [2], [27]. We consider the leaf nodes (slaves)

transmit to the cluster head (master) by one hop, due to the fact
that direct transmission is more energy efficient than multi-
hop routing in small-to-medium size WSNs [8], [27]. All
the slaves are sources and complete the applications with the
cooperation of the master node, respectively. Each slave either
transmits the raw data to the master or pre-processes it before
the transmission. The master node is in charge of receiving
data and executing further processing; after that, it forwards
the processed data to the sink node.

Sink node

Slave node

Master node

Fig. 1. A cluster-based wireless sensor network.

Our goal is to optimize the network lifetime which has a
diversity of definitions by considering the number of alive
nodes, sensing coverage, connectivity, etc. [28]. In one hop
networks, those definitions, in a certain extent, are equivalent
to the time until κ nodes die. The time when the first
node dies (κ = 1) is the most frequently used definition in
literatures such as [7], [8], [23]–[26], [28], [29]. Here, we use
this definition for the comparison with previous approaches.
Note that our algorithm also can be extended to satisfy the
lifetime definition of κ nodes die. Since each cluster can
work independently [8], [23], the minimum lifetime among
the clusters is actually the network lifetime. Thus, we only
need to focus on the optimization within each cluster.

This section firstly models the workload distribution prob-
lem, then formulates the energy consumption and time con-
straints of the slave and master nodes in the cluster.

A. Modeling Workload Distribution

Synchronous data-flow (SDF) graphs are widely used for
modeling WSN workloads [23], [25], [30]. The structure of
the data-flow is not limited to a static SDF graph, it can also
have conditional branches. This paper only presents the static
ones due to the space constraint. Fig. 2 shows one example
of a static SDF graph, G = (V ,E). Each actor v ∈ V is
a computational module for executing related task; each edge
e ∈ E represents a buffer for actors to store and fetch data
(tokens). When an actor fetches the fixed amount of tokens
from its input edges, in(v), it is fired to execute the task
and generate tokens on its output edges, out(v). The tokens
consumed and generated by an actor, kc(v) and kg(v), are
constant and can be formulated as:

kc(v) =
∑

e∈in(v)

ko(e) and kg(v) =
∑

e∈out(v)

ki(e)
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where ko(e) and ki(e) are the output and input tokens on
edge e, respectively. For each edge, the consistency prop-
erty during one scheduling period has to be satisfied, i.e.,
q
(
src(e)

)
ki(e) = q

(
snk(e)

)
ko(e), where q(·) is a unique

minimal positive integer which represents the execution times
of each actor; src(e) and snk(e) are the source and sink actors
of edge e.

Partition cut

SDF graph

Fig. 2. An example of the synchronous dataflow (SDF) graph.

Distributing the workload for the slave and master nodes is
equivalent to divide the modeled SDF graph, G = (V ,E),
into two subgraphs, Gs = (Vs,Es) and Gm = (Vm,Em),
with a partition cut. As the workload is completed by the
cooperation of the slave and master nodes, Gs and Gm has
to satisfy constraint (1):

Gs ∪Gm = G and Gs ∩Gm = ∅;

Gs 6= ∅ and Gm 6= ∅
(1)

To guarantee that the data is transmitted from the slave to the
master, each edge that across the partition cut has to meet the
constraint (2):

src(e) ∈ Gs and snk(e) ∈ Gm (2)

The amount of the transmitted data, kd, in one scheduling
period can be expressed as:

kd =
∑
v∈Gm

q(v)
(
kc(v)− kg(v)

)
=
∑
v∈Gs

q(v)
(
kg(v)− kc(v)

) (3)

To formulate the workload distribution as a linear program-
ming problem, we introduce an L × 1 binary vector, X =
[x(v1), · · · , x(vl), · · · , x(vL)]T , to represent the partition cut.
L is the number of actors in the SDF graph, and x(vl) is
a boolean parameter, it indicates that actor vl belongs to the
slave node or the master node as defined by:

x(vl) =

{
0, if vl ∈ Gs

1, if vl ∈ Gm

(4)

Then, the constraints, (1) and (2), can be rewritten as the
following matrix expressions:

1 ≤ 11×LX ≤ L− 1

BTX 5 0
(5)

where 11×L is an 1×L all one vector; 0 is an all zero vector;
B is the incidence matrix of the SDF graph, it has the row for

each actor and column for each edge: B(v, e) equals 1 if edge
e leaves actor v, −1 if edge e enters v and 0 otherwise.

Let Kv = [kn(v1), · · · , kn(vl), · · · kn(vL)] denote the
vector of the net consumed tokens of each actor, where
kn(vl) = q(vl)

(
kc(vl) − kg(vl)

)
. Then, (3) can be rewritten

as:

kd = KvX = Kv(X − 1T1×L) (6)

Kv1T1×L = 0, because the net consumed tokens of the
complete SDF graph is 0.

B. Modeling the Energy Consumption

In cluster-based WSNs, the slave node mainly spends energy
on sensing, computing, transmitting and sleeping processes;
the energy consumption of the master node includes receiving,
computing and sleeping cost.

The sensing energy consumption, Esen, depends on the
types of sensors. Most WSN applications rely on a syn-
chronous philosophy where the sensors are always working
with a given sampling ratio [31]. Thus, Esen is a constant
value when a specific WSN application is executed by the
slave and master nodes.

The computational activities of executing one actor involves
three aspects: fetching the tokens from the input edges of the
actor, processing them, and storing processed tokens onto its
output edges [23], [25]. The energy cost of executing actor v
of slave node i, ecp si(v), and the master node, ecp m(v), in
one scheduling period can be formulated as:

ecp si(v) =q(v)
(
kc(v)Pe site si + Psi(v)tsi(v)

+ kg(v)Pe site si

)
ecp m(v) =q(v)

(
kc(v)Pe mte m + Pm(v)tm(v)

+ kg(v)Pe mte m

)
(7)

where Pe si, Pe m and te si, te m represent the mean power
and time dissipation of fetching (or storing) one token from
(or onto) the edges in slave node i and the master node,
respectively; Psi(v), Pm(v) and tsi(v), tm(v) are the mean
processing power and time consumption of the actor when it
is executed in slave node i and the master node, respectively.

Let Ecp si =
[
ecp si(v1), · · · , ecp si(vL)

]
and Ecp m =[

ecp m(v1), · · · , ecp m(vL)
]

denote the computation cost of
each actor when they are executed by slave node i and the
master node, respectively. The computation energy consump-
tion of slave node i and the master node for a given partition
cut Xi in one scheduling period are:

Ecp si(Xi) =Ecp si

(
1T1×L −Xi

)
Ecp m(Xi) =Ecp mXi

(8)

As reported in [25], the communication cost of a WSN node
includes data packets communication and overhead activities.
Thus, the communication energy cost of slave node i and the
master node for transmitting and receiving kd bits data are:
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Ecm si(Xi) = eo si + etx si(di)kd

= eo si + etx si(di)Kv(Xi − 1T1×L)

Ecm m(Xi) = eo m + erxkd

= eo m + erxKvXi

(9)

where eo si and eo m are the energy that the slave node i and
the master node spend on the overhead activities; etx si(di)
and erx are the corresponding energy cost for transmitting
and receiving one bit data, respectively. According to [25],
[36], erx = PT0trx, where PT0 is the energy consumed
in the electronic circuits of the transceiver for receiving
or transmitting 1 bit of data and trx is the time cost of
receiving 1 bit of data; etx si(di) is a function of distance:
etx si(di) = ttx siPtx(di) = ttx si(PT0 + 10(L(di)+Prin)/10

η ),
where ttx si is the time cost of transmitting one bit data,
Prin is the receiver sensitivity, η is the drain efficiency, and
L(di) = 20 log10(f) + 10α log10(di) − 27.55 in which f is
the RF frequency and α is the path loss exponent.

The sleeping energy cost of slave node i and the master
node can be formulated by:

Eslp si = Pslp siTslp si

Eslp m = Pslp mTslp m
(10)

where Pslp si and Pslp m are the power consumption when
slave node i and the master node are in sleep mode; Tslp si and
Tslp m are their sleeping time which can be easily calculated
as shown in the following Sec. II-C.

As the master node is in charge of its n slave nodes, it
has to iterate n times to complete the workloads for the slave
nodes in one scheduling period. Combining (8), (9) and (10),
the energy consumption of slave node i and the master node
are:

Esi(Xi) = Pslp siTslp si + Esen + eo si+(
Ecp si − etx si(di)Kv

)(
1T1×L −Xi

)
Em(X1,··· ,Xn) = Pslp mTslp m +

n∑
i=1

eo m+(
Ecp m + erxKv

)
Xi

(11)

C. Modeling the Time Constraints

The sensing time, Tsen, is considered to be a constant value.
According to (8), the execution time of running one actor in
slave node i, tcp si(v), and the master node, tcp m(v), in one
scheduling period can be expressed as:

tcp si(v) =q(v)
(
kc(v)te si + tsi(v) + kg(v)te si

)
tcp m(v) =q(v)

(
kc(v)te m + tm(v) + kg(v)te m

) (12)

The time of executing the schedule defined by a given par-
tition Xi of the slave i, Tcp si(Xi), and the master node,
Tcp m(Xi), are:

Tcp si(Xi) =Tcp si

(
1T1×L −Xi

)
Tcp m(Xi) =Tcp mXi

(13)

where Tcp si =
[
tcp si(v1), · · · , tcp si(vL)

]
and Tcp m =[

tcp m(v1), · · · , tcp m(vL)
]

represent the time cost of the ac-
tors executed by slave node i and the master node, respectively.

Correspondingly, according to (9), the communication time
cost of slave node i, and the master node, when exploiting
partition Xi are:

Tcm si(Xi) = to si + ttx siKv(Xi − 1T1×L)

Tcm m(Xi) = to m + trxKvXi

(14)

where to si and to m are the time that slave node i and the
master node spend on the overhead activities; trx is the time
cost of receiving one bit data.

Let Tsch denote the duration of one scheduling period,
which is set up by the users according to different WSN
applications. The sleeping time of slave node i, Tslp si, and
the master node, Tslp m, can be calculated by:

Tslp si(Xi) = Tsch − Tsen − Tcp si(Xi)− Tcm si(Xi)

Tslp m(Xi) = Tsch −
n∑
i=1

Tcp m(Xi) + Tcm m(Xi)

Since time constraint is also very important and needs to
be considered in many WSN applications, we formulate the
timing constraint as follows. For concreteness, we assume that
time division multiple access (TDMA) protocol is used in
the network as for example in [8], [23]. The fixed slot is
assigned to each slave node for the transmission; the duration
of each slot, Tslot, is a uniform time period. Considering
that the Micro-processor and the RF of the WSN node work
sequentially, the master node has to complete the current
computation before it receives the data from the next slave
node. The diagrams of the activities of the slave and master
nodes are shown in Fig. 3.

...
Slave 1

Slave 2

Slave n

Master

...

...

Sensing Processing Transmitting/Receiving

...

...

...

...

Fig. 3. The diagrams of the activities of the slave and master nodes.

Thus, the time constraints of slave node i and the master
node in one scheduling period should subject to:

Tsen + Tcp si(Xi) + Tcm si(Xi) ≤ Tsch,
Tcm si(Xi) ≤ Tslot

Tcp m(Xi) + Tcm m(Xi) ≤
Tsch
n

,

Tcm m(Xi) ≤ Tslot

(15)
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III. DISTRIBUTED OPTIMAL ON-LINE TASK ALLOCATION
ALGORITHM

In this section, we firstly present the network lifetime
maximization problem that the task allocation approach aims
to solve. Then, the composition of the optimal solution is
analyzed. Based on the analysis, we present the distributed
optimal on-line task allocation (DOOTA) algorithm including
the off-line preparation and the on-line algorithm. Note that
our algorithm is carried out within each cluster independently.

A. Problem Statement

To maximize the network lifetime, it is necessary to balance
the energy cost of each node. This can be achieved by
appropriately distributing the workload by using the optimal
partition solutions. For generality, asymmetrical networks1 are
considered, where each slave node may have different energy
parameters and distances to the master. The problem is to find
the best partition solutions for each individual node to achieve
the maximum network lifetime. We formulate the problem
using the models created in Sec. II in the following.

Let Xj
i denote the partition cut that slave node i exploits

in the jth scheduling period. Assuming the network dies after
T periods, the problem is then to find Xj

i (i = 1, · · · , n; j =
1, · · · , T ) to maximize T , which can be formulated as:

arg max
Xj

i

T

subject to :
T∑
j=1

Esi(X
j
i ) ≤ Bsi, i = 1, · · · , n

T∑
j=1

Em(Xj
1,··· ,X

j
n) ≤ Bm

(5) and (15)

where Bsi and Bm are the battery energy of the slave node i
and the master node, respectively.

Although [23], [25] and [26] has solved this problem,
even [25] and [26] present the off-line optimal solutions,
they are centralized algorithms and require to obtain the
detailed network parameters in advance, which is hard or even
impossible in realistic scenarios. Moreover, the networks are
not always static: the number of the nodes and their positions
may change over time. Off-line methods are not efficient
enough to maximize the network lifetime; even worse, they
may decrease the network lifetime. Nevertheless, the results
obtained by these methods can be treated as the metrics to
quantify the quality of our proposed DOOTA algorithm.

B. Analysis of the Optimal Partition Solution

We analyze the composition of the optimal partition solution
in this section. This lays the foundation for us to propose the
DOOTA algorithm. It is inspired by [26], in which the authors

1Note that, the workload distribution schedules can be easily applied in
the symmetrical networks, where all slave nodes just need to have one same
partition solution.

present a surprising report that the optimal partition solution
always consists of two partition cuts. However, they conclude
this result only from the simulation observations without any
theoretical support. We provide an in-depth analysis to fill this
gap.

When considering a specific SDF graph in the cluster, the
number of the valid partition cuts is limited. Each partition
cut can be associated with a point, (Esi, Emi), on the energy
plane, which represents the energy cost of slave node i, Esi,
and the master node, Emi. Using (13) and (14), the time
latencies of slave node i and the master node when exploiting
each partition cut can be calculated. According to the time
requirement, we remove those points which cannot satisfy the
time constraint, (15). The corresponding energy points of the
left partition cuts and their combinations construct a convex
set as shown in Fig. 4.

Optimal curve

Fig. 4. All combinations of the valid partition cuts and the corresponding
energy consumption of slave node i and the master node.

The smaller the energy consumption of the node, the longer
it can survive. Thus, we target at the points that minimize the
energy consumption of slave node i under the same energy
consumption of the master node and vice versa. These points
correspond to a subset of the boundary of the convex set,
which is called optimal curve (see Fig. 4). It is actually a
convex curve. Its start and end points, X̂a

i and X̂c
i , stand for

the minimum energy cost of the slave node i and the master,
respectively. Given an arbitrary point in the convex set, i.e.,
one arbitrary possible partition solution, there exists at least
one point on the optimal curve where both the energy cost of
slave i and the master are smaller than or equal to the given
point. In other words, there is always at least one partition
solution on this optimal curve that makes the lifetimes of both
the slave and master nodes longer or equal to other solutions in
the convex set. Therefore, the optimal solution is definitely on
this optimal curve, which is formed by the important partition
cuts and their linear combinations. As shown in Fig. 4, for
example, the optimal solution is either one of the important
partition cuts, X̂a

i , X̂b
i and X̂c

i , or the linear combinations
of X̂a

i and X̂b
i or X̂b

i and X̂c
i .

Therefore, we only need to keep the important partition cuts
and construct the optimal curve to obtain the optimal solution.
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C. DOOTA Algorithm

The DOOTA algorithm consists of two phases: an off-line
preparation and an on-line algorithm. Each slave node firstly
stores the optimal curve off-line, and then runs the on-line
algorithm to calculate its own partition solution.

1) Off-line Preparation: Based on the analysis in Sec.
III-B, this section aims to obtain the important partition cuts
and formulate the optimal curve. The cuts can be obtained off-
line because the SDF graphs of the applications can be easily
modeled before deploying the networks in realistic scenarios.

Since the important partition cuts are among the valid
partition cuts, we firstly find the valid ones using a binary
decision diagram (BDD). For a SDF graph with L actors, the
complexity of finding the valid partition cuts which satisfy
the constraints (1) and (2) by enumeration is O(2L): it
exponentially increases with L. Using a recursive boolean
description of the problem and implementing the computations
with BDDs, we can improve notably the performance of
the algorithm. A BDD is a data structure used to represent
a boolean function [32]; it can be also considered as a
compressed representation of sets or relations. The partition
cuts are made up of L boolean variables, since each actor of
the SDF graph belongs to either the slave or master. Thus, we
can compress a set of valid partitions using a BDD with L
variables.

The key idea is to use the implicit partial order defined by
the SDF graph. There may exist different valid paths from
actor vl to the end actor vL in the SDF graph. According to
constraint (2), actor vl cannot be assigned to the master if its
destination actors belong to the slave node. Taking Fig. 2 as an
example, there are two paths from v3 to v6: v3 → v4 → v5 →
v6 and v3 → v5 → v6. When v3 is assigned to the master
node, its destinations v4 and v5 must belong to the master.
We use vl and v̄l to represent that actor vl is distributed to the
master and slave nodes, respectively. Let Ψl denote a boolean
function of actors on the paths from vl to vL which returns true
when vl belongs to the master and constraint (2) is satisfied.
It can be expressed recursively as:

Ψl = vl
∧

vj∈dest(vl)

Ψj

where dest(vl) is the set of the destination actors of vl. Further
on, when actor vl is assigned to the slave node, its destination
actors do not affect its assignment. Thus, boolean function,
ψl, describing the paths satisfying constraint (2) and starting
at point l is:

ψl = Ψl ∨

v̄l ∧
vj∈dest(vl)

ψj


According to constraint (1) that the slave and master nodes
have to cooperate to complete the whole workload, it satisfies
ψL = ΨL = vL and Ψ1 = ∅. Through the reversed iterative
computations from ψL to ψ1, the representation of the valid
partition cuts ψ1 can be obtained. However, the complexity
may exponentially increase with L. Therefore, efficient ways
to obtain the valid partition cuts are needed. This work uses the
CUDD package [33], which can efficiently manipulate BDDs

of boolean functions, to create the final BDD of ψ1. When
obtaining the BDD, the valid partition cuts are actually the
paths from the top actor to terminal 1. For instance, the BDD
with the reversed order of the SDF graph in Fig. 2 is created
as shown in Fig. 5. The dotted and solid edges represent
that their source actors belong to the slave and master nodes,
respectively. We can easily obtain that there are 6 paths from
the actor v6 to terminal 1. Each path corresponds one valid
partition cut that represents the distribution result of each actor.
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Fig. 5. The BDD graph of the SDF graph in Sec. II-A.

Next, we calculate the important partition cuts. Once the
valid partition cuts are obtained, we compute their energy
consumption using (11) and obtain the energy plane as Fig. 4
shows. The point that makes the slave node consume the least
energy is selected as the first important point. We calculate
the slopes of the segments which start from the first important
point to the others. The point which corresponds to the
minimum slope is the second important point. Then, we start
from the current important point to find the next one until the
last one is found. The computation complexity depends on the
specific energy points. In the worst case, it is O(

Nvp(Nvp−1)
2 ),

where Nvp is the number of the valid partition cuts.
We further formulate the optimal curve using the obtained

important partition cuts. Taking Fig. 4 for example, the
obtained important partition cuts are X̂a

i , X̂b
i and X̂c

i . The
relation between Emi and Esi on this optimal curve can be
formulated as (16), which will be stored in slave node i before
deploying it into the network.

Emi =

{
A0Esi +B0, ifEsi ∈

[
Esi(X̂

a
i ), Esi(X̂

b
i )
]

A1Esi +B1, ifEsi ∈
[
Esi(X̂

b
i ), Esi(X̂

c
i )
] (16)

where

A0 =
Em(X̂a

i )− Em(X̂b
i )

Esi(X̂
a
i )− Esi(X̂b

i )
, A1 =

Em(X̂b
i )− Em(X̂c

i )

Esi(X̂
b
i )− Esi(X̂c

i )
,

B0 =
Esi(X̂

a
i )Em(X̂b

i )− Em(X̂a
i )Esi(X̂

b
i )

Esi(X̂
a
i )− Esi(X̂b

i )
and

B1 =
Esi(X̂

b
i )Em(X̂c

i )− Em(X̂b
i )Esi(X̂

c
i )

Esi(X̂
b
i )− Esi(X̂c

i )
.
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Note that Esi = Esi(X̂
a
i ) when Esi < Esi(X̂

a
i ) and Esi =

Esi(X̂
c
i ) when Esi > Esi(X̂

c
i ), due to the energy limitations

of the slave and master nodes.
2) DOOTA: Based on the analysis and the results in Secs.

III-B and III-C1, we propose the DOOTA algorithm in this
section. It is actually an on-line negotiation among the slave
and master nodes considering the parameters of the network,
after each slave node stores the function of the optimal curve
off-line. We firstly present a naive method, which may require
a large quantity of intra-cluster communications. In order to
reduce the communication overhead, a lightweight method is
further proposed.

Naively, the master node firstly broadcasts an expected net-
work lifetime Te, when the network starts to work. Each slave
node computes its own expected energy consumption Ee si =
Bsi/Te and the corresponding Ee mi according to (16), and
then transmits them to the master node. After receiving the
messages from all slave nodes, the master node examines
whether its battery energy is enough to last Te time. If it
still has residual battery energy, i.e., Bm > Te

∑n
i=1Ee mi,

it broadcasts a larger Te, otherwise a smaller one. The slave
nodes calculate the corresponding Ee si and Ee mi again until
Bm = Te

∑n
i=1Ee mi. At last, the master node broadcasts one

confirm message, and the slave nodes individually calculate
their own partition solutions based on the final Ee si. Although
this naive method is simple, it may need a large quantity of
message exchanges, which results in too much overhead.

To address the overhead problem, we propose a lightweight
on-line algorithm. It can dramatically reduce the number of
iterations based on Theorem 1.

Theorem 1. When the lifetimes of the slave and master nodes
are equivalent i.e., Ts1 = · · · = Tsn = Tm, the time until the
first node dies is maximized.

Proof. Assuming Ts1 = · · · = Tsn = Tm = T ∗, the average
energy consumption of slave node i, E∗si, and the master node,
E∗m, over T ∗ periods are:

E∗si =
Bsi
T ∗

and E∗m =

n∑
i=1

E∗mi =
Bm
T ∗

When the lifetimes of the nodes do not equal each other, e.g.,
Tsi = T ∗ + ε > T ∗, where ε is an arbitrary positive real
number, there exists:

Esi =
Bsi

T ∗ + ε
<
Bsi
T ∗

= E∗si

According to the monotone decreasing property of (16), Emi
is bigger than E∗mi, which causes Em =

∑n
i=1Emi is bigger

than E∗m too. Thus, we can obtain that:

Tm =
Bm
Em

<
Bm
E∗m

= T ∗

The network lifetime, min{Ts1, · · · , Tsn, Tm} = Tm, is
smaller than T ∗. The proof is similar when Tsi = T ∗−ε < T ∗,
in which the lifetime, min{Ts1, · · · , Tsn, Tm} = Tsi, is
smaller than T ∗ too.

Unlike the naive method where the master node randomly
adjusts Te according to the received messages, the improved

algorithm enables the master node to calculate the temporary
optimal lifetime T̂ . After each slave receives Te, it transmits
not only its expected energy cost Ee si = Bsi/Te and the
corresponding Ee mi calculated by (16), but also the slope,
ke i, of the segment which includes the point (Ee si, Ee mi)
as shown in Fig. 4. Let (Êsi, Êmi) represent the energy point
corresponding to the optimal lifetime T̂ . Assuming it is still
on the current segment, Êmi can be calculated by:

Êmi = Ee mi + ke i(Êsi − Ee si) (17)

According to Theorem 1, there exists:

T̂ =
Bsi

Êsi
=

Bm∑n
i=1 Êmi

(18)

Since Ee si = Bsi/Te, combining (17) and (18), T̂ can be
calculated in the master node by:

T̂ =
Bm − Te

∑n
i=1 ke iEe si∑n

i=1Ee mi − ke iEe si
(19)

Then, the master node compares T̂ with Te. If they are
different, it broadcasts the current expected lifetime Te = T̂ .
Slave node i repeats the calculation of Ee si, Ee mi and ke i,
and sends them to the master node. Once T̂ equals Te, the
master node broadcasts a confirm message. The last received
Te is actually the final maximum lifetime; slave node i can
easily calculate its own optimal partition cuts and the weights
based on it. For instance, assuming T̂ in Fig. 4 is the final
lifetime, the optimal partition solution for slave node i consists
of two partition cuts, X̂b

i and X̂c
i , with the related weights

wb and wc.

wb =
Esi(X̂

c
i )− Êsi

Esi(X̂
c
i )− Esi(X̂b

i )

wc =
Esi(X̂

b
i )− Êsi

Esi(X̂
b
i )− Esi(X̂c

i )

(20)

The pseudo codes that executed in the master node and slave
node i are shown in Algorithm 1 and Algorithm 2.

Algorithm 1 Master node algorithm
1: Initialize Te and broadcast it
2: for each calculation round do
3: Receive Ee mi, ke i and Ee si
4: Calculate T̂ using (19)
5: if T̂ == Te then
6: Broadcast confirm
7: Break
8: else
9: Te = T̂ , and broadcast Te

10: end if
11: end for

IV. SIMULATIONS AND ANALYSIS

This section evaluates the performance of the DOOTA al-
gorithm and demonstrates its superiority by comparing it with
the approaches [23], [25], [26] that use the same application
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Fig. 6. The SDF graph of spectrum computation application.

Fig. 7. The SDF graph of MEPS computation.

Algorithm 2 Slave node algorithm
1: for each received message do
2: if not confirm then
3: Calculate Ee si, Ee mi and ke i, using (16),
4: and transmit them
5: else
6: Êsi = Bsi/Te
7: Calculate partition weights using (20)
8: Break
9: end if

10: end for

and network modeling. We firstly generate an arbitrary cluster
based WSN, with which the lifetime increase of the network
using DOOTA is presented and compared. Secondly, we study
the performance and overhead cost of DOOTA within the clus-
ter, since each cluster can work independently. By adjusting
the number of slave nodes in the cluster, numerous simulation
results regarding the lifetime increase, the running time and the
number of exchange messages are presented. Afterwards, the
flexibility of DOOTA is illustrated by dynamically changing
the density of the cluster.

A. Parameters and Off-line Preparation for DOOTA

1) simulation parameters: The values of the energy related
parameters of the slave and master nodes in the networks are
obtained from [23], [34]: Pm(v) = Psi(v) = Pe m = Pe si =
36.9mW , to m = to si = 100µs, eo m = eo si = 3.69µJ
, trx = ttx si = te m = te si = 4µs,erx = 0.239µJ , the
related parameter values for calculating etx si(di) are PT0 =
59.8mW , Prin = −85dBm, η = 0.05, f = 2.4G Hz and
α = 2. The sleep energy cost is so small that is not considered
in the simulations.

The battery energy of each node is randomly generated
from 1 to 10 kJ. Two typical computation applications, spec-
trum computation that converts signals from time domain
to frequency domain and maximum entropy power spectrum
(MEPS) computation adapted from Ptolemy II design environ-
ment [22], [23], [35] are used. The corresponding SDF graphs
of the two applications and the execution time of each actor

TABLE I
EXECUTION TIME OF ACTORS IN SPECTRUM APPLICATION SDF GRAPH.

Actors Average execution
cycle on CC2430

Average execution time
(sec.) on CC2430
with 32MHz CLK

Numbers of
iterations,

q(·)
SRC 2532.99 7.92E-5 256
FFT 8163758 0.26 1
ABS 1409 4.4E-5 256

SCALE 1606.3 5.02E-5 256
DB 707 2.21E-5 256

TABLE II
EXECUTION TIME OF ACTORS IN MEPS APPLICATION SDF GRAPH.

Actors Average execution
cycle on CC2430

Average execution time
(sec.) on CC2430
with 32MHz CLK

Numbers of
iterations,

q(·)
SRC 2534.21 7.92E-5 512
ACL 52830479 1.65 1

LEVD 17977524 0.56 1
ARRAYA 2186 6.83E-5 1
ARRAYE 325 1.01E-5 1
REPEAT 28093 8.77E-4 1
CHOP 39672 1.24E-3 1
FFT 7479003 0.23 1
ABS 1428.24 4.46E-5 256

SQUARE 478.85 1.5E-5 256
MUL 618.29 1.93E-5 256
DB 722.25 2.26E-5 256

in each SDF graph related to the CC2430 node are shown
in Figs. 6 and 7, Tabs. I and II [23], [25], respectively. The
energy consumption of sensing unit is included in actor SRC.

2) off-line preparation for DOOTA: In our simulations,
each slave node executes the same application, MEPS or
spectrum. The corresponding important partition cuts of each
application can be obtained using the method mentioned in
Sec. III-C1. There are total N = 2L partition cuts of a given
SDF graph with L actors, since each actor can belong to either
the slave node or the master node. For MEPS application,
N = 212. After filtering the partition cuts by using the binary
decision diagram, 21 valid partition cuts remain. Among these
cuts, there are only 3 important partition cuts, X1, X3 and
Xm as shown in Fig. 7. Similarly, there are also 3 important
partition cuts for the spectrum graph. Those cuts are stored in
each slave node before the deployment of the network.
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B. Evaluation of DOOTA: general WSNs

This section evaluates the DOOTA algorithm on a common
WSN scenarios. As shown in Fig. 8, we generate a WSN with
100 nodes randomly located in a two dimensional network
area of 100× 100 square meters. The sink node is located at
the point (50, 150) which is not shown in the figure. Using
LEACH [27] clustering protocol, the 100 nodes are grouped
into 6 clusters, C1, · · · , C6. In the cluster, each slave node
connects with one master node by one wireless hop.

0 20 40 60 80 100
0

20

40

60

80

100

Fig. 8. The 100-node random test WSN of size 100× 100m2 is grouped
into 6 clusters based on the idea of LEACH [27]. The master and slave nodes
are marked by • and � with different color in different clusters, respectively.
The sink node is located at the point (50, 150) which is not shown.

We evaluate the DOOTA algorithm on the above described
scenario in terms of network lifetime increase with respect
to the strategy of no scheduling, in which each slave node
just executes the task of the first actor of the SDF graph.
The performance of DOOTA is compared with three similar
approaches:
• Heuristic on-line [23]: It calculates different partition

solutions as the number of slave nodes varies. The result
is stored in the nodes before deploying the network. At
run time, the partition solution is selected based on the
number of slave nodes.

• Off-line static [25]: It formulates the task allocation
problem as an integer linear programming (ILP) problem
and provides an optimal static partition cut for each slave
and master node.

• Off-line dynamic [26]: It formulates the task allocation
problem as a LP problem and provides multiple partition
cuts with the corresponding weights. It provides optimal
solutions when all the network parameters are known.

Each cluster independently executes the above algorithms.
For the off-line approaches [25] and [26], they are termed as
off-line static oracle and off-line dynamic oracle, respectively,
if the center (oracle) knows all of the network parameters in
advance. Fig. 9 depicts the corresponding lifetimes of the 6
clusters by using different schemes. It is obvious that DOOTA
performs better than off-line static oracle and the heuristic
on-line schemes in each cluster for both MEPS and spectrum
applications. It extends the lifetime of each cluster as much as
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Fig. 9. The lifetimes of the 6 clusters by applying the no scheduling strategy,
off-line static and dynamic oracles, heuristic on-line and DOOTA algorithms
for (a) MEPS and (b) spectrum applications.

the off-line dynamic oracle. The network lifetime is defined
as the minimum lifetime among the clusters. Taking Fig. 9a,
the MEPS application, for example, the lifetime of cluster
C4 is considered as the network lifetime. Among the four
approaches, the heuristic on-line provides the lowest extension
of the network lifetime. It considers that all slave nodes have
the same battery and transmission distance to the master
node. This assumption makes the heuristic on-line scheme
very simple and easy to implement, while it also brings a
limitation in the asymmetrical networks. Rather than using
the static partition, DOOTA and the off-line dynamic oracle
achieve the maximum network lifetime by providing different
partition cuts with the corresponding weights. Specifically,
both DOOTA and the off-line dynamic oracle increase the
network lifetime by 10.24 times with respect to the no
scheduling strategy, while the off-line static oracle and the
heuristic on-line methods extend the network lifetime by 7.59
and 4.52 times, respectively. The similar phenomenon holds
for spectrum application as shown in Fig. 9b.

Although the off-line dynamic oracle can maximumly ex-
tend the network lifetime, it is too complex and needs to know
all the network parameters in advance. While the overhead
cost of running the DOOTA algorithm is so small that can be
neglected as detailedly presented in the next section.
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C. Evaluation of DOOTA: independent cluster

Since each cluster executes DOOTA independently, we
present the detailed estimations of DOOTA within the cluster
in this section. The cluster is randomly generated in a two
dimension area of 100 × 100 square meters with one master
located at the center and n randomly distributed slave nodes.
The reported results are obtained by generating 500 instances
of the simulations.

Firstly, a set of simulations are conducted to estimate the
effect of the number of the slave nodes, n, on the increase of
network lifetime with respect to the no scheduling strategy.
The results reported in Fig. 10 show that all of the four
task allocation approaches dramatically extend the network
lifetime for both MEPS and spectrum applications. As the
number of slave nodes in the cluster, n, increases, their
improvements become more significant. It is due to the fact
that the rapid increasing workload in each cluster makes the
master node overburdened and die soon. While through the
efficient workload scheduling, the energy consumption of each
node is well or even optimally balanced. For example, DOOTA
extends the network lifetime in average from 5.90 to 20.94
times when the cluster size increases from 5 to 40 as shown
in Fig 10a. It performs as well as the off-line dynamic oracle
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Fig. 10. The network lifetime increase by applying the heuristic on-line,
off-line static and dynamic oracles, and DOOTA algorithms with respect to
no scheduling for different cluster size. (a) MEPS application. (b) spectrum
application.

and outperforms the off-line static oracle and heuristic on-line
schemes, which is consistent with the simulation results in Sec.
IV-B. Moreover, DOOTA has more advantages for handling
complex task allocation problems. The superiority of DOOTA
for the MEPS application (see Fig. 10a) is more significant
than the spectrum application (see Fig. 10b). Since there is
only one master node in the cluster, executing the task of the
last actor of the application graph is always the best partition
solution as n becomes a very large number. This application
caused limitation makes the complex applications have more
task allocation possibilities than the simple ones.

In the next sets of simulations, we estimate the overhead
cost of executing DOOTA algorithm. The overhead cost
mainly consists of two parts: the computation and communica-
tion costs. The computation cost is measured by the execution
time of running the algorithm in Matlab. Fig. 11 illustrates
the algorithm runtimes of the above mentioned approaches
for MEPS and spectrum applications. It is very fast to execute
the on-line approaches due to the lightweight complexity,
while the time consumption of the two off-line approaches
are hundreds of times higher than them. The heuristic on-line
approach requires the least runtime, since it only look-ups the
table, where the relation between the partition solutions and
the corresponding number of slave nodes are stored off-line.
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Fig. 11. The algorithm runtime of the heuristic on-line, off-line static and
dynamic oracles, and DOOTA algorithms for different cluster size. (a) MEPS
application. (b) spectrum application.
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Although DOOTA needs slightly more time, it provides the
optimal partition solutions and achieves the maximum network
lifetime. Thus, the energy cost of the simple computation
of DOOTA can be neglected. Note that the complexities of
the applications do not affect the runtime of DOOTA, which
is only influenced by the number of the important partition
cuts of the application graph as presented in Sec. III-C2. The
runtimes of DOOTA for both MEPS and spectrum applications
are very close as shown in Fig. 11, since both the MEPS
and spectrum application graphs have the same number of
important partition cuts as illustrated in Sec. IV-A2.

The communication overhead is measured by the number
of the message exchanges between each slave and the master
node. As shown in Fig. 12, the number of the message
exchanges is very small. Specifically, each node only needs in
average up to 5 message exchanges as n changes from 5 to 40
for MEPS application. Since DOOTA is able to calculate the
temporary optimal network lifetime according to (19), which
significantly reduces the number of the message exchanges.
Therefore, compared with the network lifetime which lasts
hundreds of thousands scheduling rounds, the overhead of
executing DOOTA algorithm can be neglected. Besides, there
is a slight difference between the number of message ex-
changes per node for MEPS and spectrum applications, since
DOOTA is operated based on the important partition cuts of
the application graph.

5 10 15 20 25 30 35 40

Clusterdsize,dn

0

1

2

3

4

5

6

7

N
o.

do
fdm

es
sa

ge
de

xc
ha

ng
es

dp
er

dn
od

e MEPSdapplication
Spectrumdapplication

Fig. 12. Number of message exchanges per node of DOOTA algorithm for
MEPS and spectrum applications.

Further on, DOOTA algorithm can flexibly respond the
dynamic changes of the network, which is the major limitation
of the off-line algorithms or complex centralized algorithms.
When the network changes at run time, e.g., the cluster size
suddenly changes from 10 to 20, DOOTA and the heuristic on-
line scheme can immediately respond the dynamic changes
by few number of message exchanges and table look-up
operation, respectively. While the off-line static and dynamic
approaches cannot provide any partition solution for the new
added nodes2. Fig. 13 depicts the improvements of network
lifetime of the four approaches for the suddenly changed

2We consider that the oracles are not available when dynamic changes
happen.
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Fig. 13. The network lifetime increase by by applying the heuristic on-
line, off-line static and dynamic, and DOOTA algorithms, with respect to no
scheduling when the cluster size suddenly changes from 10 to 20 at run time.

cluster size. As expected, both the DOOTA and heuristic on-
line scheme increase the network lifetime much longer than the
off-line static and dynamic approaches. DOOTA outperforms
the heuristic on-line scheme, since it provides the optimal
partition solution. Meanwhile, the superiority of DOOTA is
more significant for complex MEPS application than spectrum
application, which is consistent with the results in Fig. 10.

V. CONCLUSION

This paper proposes a distributed optimal on-line task al-
location (DOOTA) algorithm for cluster-based wireless sensor
networks. It takes the energy consumption of sensing, comput-
ing, communicating and sleeping into account, and provides
optimal partition solution to maximize the network lifetime.
Unlike the previous centralized and off-line approaches which
have to know all of the network parameters in advance,
e.g., battery energy and location of each node, this work
enables each node to calculate its own partition solution on-
line with very lightweight complexity. Through an in-depth
analysis, we prove that the optimal solution for each node
is made up of at most two of the important partition cuts
with the proper weights. This can be obtained with the help
of the binary decision diagram theory. The simulation results
demonstrate the efficiency of DOOTA algorithm. With very
fast execution time and typically 3 to 5 message exchanges
between each slave and the master, DOOTA maximizes the
network lifetime as much as the off-line dynamic algorithm.
It always outperforms the heuristic on-line and off-line static
task allocation algorithms. The superiority of DOOTA be-
comes more significant for complex applications. In addition,
DOOTA can flexibly address the dynamic network changes at
runtime.
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