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Abstract

Metal wires and through silicon vias (TSVs) are frequently performance bottlenecks of 3D ICs due to their high capacitive
crosstalk which can be reduced using coding techniques. In this work we show that existing TSV crosstalk avoidance
codes (CACs) are impractical for real applications due to the edge effects in TSV bundles. Additionally, these 3D CACs
do not reduce the metal wire crosstalk and dramatically increase the power consumption of 2D and 3D interconnects.
This work presents a 3D CAC which overcomes previous limitations. The method is based on an intelligent fixed mapping
of the bits of existing 2D CACs onto rectangular or hexagonal TSV arrangements. Simulation results, obtained by
circuit simulations in combination with an electromagnetic field solver, show that existing 3D CACs only reduce the
TSV crosstalk by a maximum of 9.4 %, provide no optimization of the metal wire crosstalk and induce an increase in
the interconnect power consumption by about 50 %. In contrast, the presented technique requires less hardware and
reduces the maximum crosstalk of modern TSV and metal wire buses by 37.8 % and 47.6 %, respectively, while leaving
their power consumption almost unaffected. Alternatively, our technique can reduce the TSV and metal wire crosstalk
peaks by 20.3 % and 47.7 %, respectively, while additionally providing a reduction in the TSV and metal wire power
consumption by 5.3 % and 21.9 %, respectively.
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1. Introduction

3D integration is one of the promising solutions to
overcome the challenges that arise with the limit of Moore’s
law. As the interconnect structure between the dies of a 3D
system on chip (3D SoC), through silicon vias (TSVs) are
typically used as they yield to a high reliability [1]. TSVs
are usually bundled together, rather than used in isolation
[2]. By using regular TSV bundles, it is possible to generate
wide I/O 3D components, such as stacked DRAM cells [3].

However, TSV bundles, as well as metal wires, suffer
from crosstalk which is a threat to the delay, the power
consumption and the signal integrity [4]. In recent years,
crosstalk became the critical design issue for the traditional
planar metal wire interconnects, due to their limited scaling
[5]. Previous research shows that the crosstalk problem
is not alleviated for TSV interconnects due to the rela-
tively large TSV dimensions and the increased number of
aggressors compared to the traditional planar metal wires
[6, 7]. Thus, crosstalk is still an important design concern
for 3D integrated circuit (3D IC) design and consequently
caught the attention of academic as well as industrial ex-
perts (e.g. [6–18]). Most previous works deal with the
theoretical analysis of crosstalk models [6–15], with some
also proposing manufacturing techniques to suppress TSV
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crosstalk noise [12–15]. On the downside, these manufac-
turing techniques significantly increase the production costs
and further impair the already critical TSV manufacturing
yield [19].

Thus, since crosstalk is a pattern dependent phenomena
[4], data encoding approaches have been recently proposed
which reduce the maximum TSV crosstalk without affect-
ing the manufacturing process [16–18]. These crosstalk
avoidance coding (CAC) approaches keep the crosstalk of
each TSV in the middle of an array below a certain level by
avoiding critical transitions. None of the existing methods
ever analyzed the crosstalk of the TSVs which are located
at the edges of an array. Previous works claim that, due to
the reduced number of adjacent aggressors, the crosstalk of
these edge TSVs is significantly lower than the crosstalk of
the middle TSVs. However, this assumption is wrong. Due
to the edge effects, the coupling between two edge TSVs is
stronger than in the middle of the array [20]. Hence, the
overall crosstalk of edge TSVs is only slightly lower than
the crosstalk of middle TSVs. This fact heavily reduces
the coding efficiency of existing 3D CACs. For modern
TSV arrays, the actual crosstalk reductions of the CACs
are less than 50 % of the previously reported values, as
shown in this work. The lower coding gains in combination
with their high overhead costs make existing 3D CACs
impractical for real applications. Thus, an efficient coding
method needs to reduce the crosstalk of the middle and
the edge TSVs simultaneously. The second limitation of
existing 3D CACs is that they only aim to reduce the max-
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imum crosstalk of rectangular TSV arrays, even though
the placement of TSVs within a heaxagonal grid shows
lower area requirements [21]. Furthermore, metal wires
are not absent in 3D integration and their crosstalk is not
negligible. Hence, an efficient technique should reduce the
maximum crosstalk of metal wires and TSV simultaneously.
Additionally, the high overhead costs of existing 3D CACs
lead to a drastic increase in the interconnects power con-
sumption by up to 50 % [5]. This often strictly forbids
the usage of the techniques as the advent of nanometric
technologies has increased the criticality of the interconnect
power consumption [5].

Existing 2D CACs have been shown to effectively reduce
the maximum crosstalk and the power consumption of tra-
ditional metal wires [4]. Thus, to overcome all limitations,
we focus on 2D CACs and present a solution to make them
suitable for arbitrary TSV arrangements by an edge effect
aware bit-to-TSV mapping. Thereby, the CACs retain
their efficiency for the planar metal wires. The optimal
bit-to-TSV mapping is determined by means of a cost func-
tion. Hereby, the mapping constraints can be fine-tuned to
solely optimize the maximum TSV crosstalk (interconnect
delay and noise) or the maximum TSV crosstalk and the
TSV power consumption simultaneously.

We first presented the idea of an edge effect aware 3D
CAC technique, suitable for TSVs as well as metal wires,
in [22]. However, the present work provides major exten-
sions. While the previous work is restricted to TSV arrays,
this work additionally includes a modeling approach, an
analysis and an optimization technique for hexagonal TSV
arrangements. Despite its importance, a power analysis
as well as a technique to optimize the power consumption
beside the maximum crosstalk are also not included in the
previous work. Moreover, for this work, we strengthened
the mathematical formulations.

Analyses for modern TSV arrangements show that for
all employed 2D CACs our method outperforms all existing
3D CACs. For example, for an undelying FTF 2D CAC [4],
compared to the latest presented 3D CAC [18], we measured
an improvement in the maximum TSV crosstalk/delay
reduction by a factor of 2.95× and a simultaneous decrease
in the TSV power consumption by 24.7 %. Furthermore,
our technique requires a 12.0 % lower bit overhead and a
42.8 % lower circuit area. Additionally it decreases the
power consumption and delay of modern metal wire buses
by 21.9 % and 47.6 %, respectively.

The remainder of this paper is organized as follows. In
Section 2 an edge effect aware crosstalk classification is
presented for mesh and hexagonal TSV topologies. The
limitations of previous 3D CACs are precisely outlined in
Section 3. Our proposed technique, which overcomes those
limitations, is presented in Section 4. An evaluation of our
technique which analyzes the maximum crosstalk reduction
and also clarifies the trade-off between crosstalk peak and
power reduction is presented in Section 6. The subsequent
Section 7 includes simulation results. Finally, this paper is
concluded in Section 8.
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Fig. 1: Capacitances in a metal wire bus

2. Crosstalk classification including edge effects

For typical digital signals, capacitive coupling is the
dominant crosstalk source of planar metal wires and vertical
TSVs and dominates over inductive crosstalk [4, 16–18, 23].
This observation is again validated by the final analysis
of our work (Section 7), which considers inductive effects.
Consequently, only capacitive coupling is considered in the
crosstalk classification presented in this paper.

The crosstalk of an interconnect i in clock cycle k is
quantified by the effective capacitance to be reloaded [4]:

Ceff,i[k] = ∆b2i [k]Ci,0 +
∑
j

δi,j [k]Ci,j . (1)

Here Ci,0 is the self/ground-capacitance of interconnect
i and Ci,j is the coupling-capacitance between the inter-
connects i and j. ∆bi determines the self switching of
interconnect i:

∆bi[k] = bi[k]− bi[k − 1], (2)

which is either −1, 0 or 1. Here, bi[k] is the binary value of
interconnect i for the kth clock cycle. δi,j determines the
crosstalk switching between the interconnects i and j:

δi,j [k] = ∆b2i [k]−∆bi[k]∆bj [k]. (3)

δi,j is equal to 2, if reverse signal transitions occur on
the interconnects i and j (e.g. i switches from logical 0 to
1, while j switches from logical 1 to 0); if only interconnect
i switches, δi,j is equal to 1, otherwise it is 0.

In the following we present simple, scalable and univer-
sal capacitance models for metal wires and TSVs. The com-
bination of these models with Eq. 1 results in the crosstalk
classification. The model for the metal wires is depicted
in Fig. 1. Between every adjacent metal wire pair exists a
coupling-capacitance Cc and every metal wire has a capaci-
tance to the grounded substrate contacts Cg [5]. The actual
ground-capacitances of a metal wire is equal to the sum of
Cg and the interconnects load-capacitance . However, the
load-capacitance is negligibly low in modern on-chip inter-
connects [5]. Combining this capacitance model with Eq.
1 results in a range for the effective capacitance of a metal
wire of [Cg, Cg+4Cc]. Usually the ground-capacitances are
neglected and the metal wire crosstalk is quantified in five
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Fig. 2: Capacitances in TSV arrangements: a) array/mesh topology;
b) hexagonal topology. Edge TSVs are marked E

classes as 0Cc to 4CC , since the self-capacitances are mag-
nitudes smaller than the coupling-capacitances in modern
metal wire buses [4].

Let us now discuss the capacitances inside TSV bundles.
While previous 3D CACs are only applicable for rectangular
TSV arrays, this work presents a technique which can be
generally used for any TSV topology. However, mainly two
different TSV topologies exist. Besides the well established
rectangular TSV arrays (mesh topology), hexagonal TSV
bundles have been recently proposed [21]. While hexagonal
arrangements have the advantage of a reduced area per
TSV, array structures are more regular and thus simplify
the manufacturing as well as the place & route process.
Here, we exemplary investigate our approach for both ar-
rangements. Thus, for hexagonal as well as mesh structures
a capacitance model is required. As shown in Ref, [20], the
TSV array capacitance model used for the derivation of
previous 3D CACs leads to impractical CACs, due to the
disregarded edge effects. Also, the capacitance model for
the hexagonal arrangement, stated in Ref. [21], neglects
these effects. Thus, we present new simple capacitance
models for hexagonal and rectangular TSV bundles, which
consider these effects.

The capacitance model for rectangular TSV arrays is
depicted in Fig. 2.a. Due to the Faraday cage effect,
only TSVs at the edges of an array have a significant
ground-capacitance due to the grounded substrate contacts.
Although the ground-capacitances of the TSVs at the four
corners of the array are slightly bigger [20], for the sake of
simplicity, we use one capacitance value (Cs) to describe
the substrate-capacitances of all edge TSVs. Between any
adjacent TSV pair exists a coupling-capacitance. Because
of the different distances, a capacitance between diagonal
adjacent TSVs Cd is several (3-5 [20]) times smaller than
a capacitance between orthogonal adjacent TSVs. In the
middle of the array, the capacitances between orthogonal
adjacent TSVs are equal to Cn. Due to the E-field sharing
effect, the capacitance between two orthogonal adjacent
edge TSVs Ce is significantly bigger than Cn (ca. 30-
45 % [20]). Summarized, the effective capacitance of a
middle TSV is in the range of 0 to 8Cn+8Cd, while the
effective capacitance of an edge TSV is in the range of
Cs to Cs+4Ce+2Cn+4Cd. For the crosstalk classification,

the capacitance value between two orthogonal adjacent
middle TSVs (Cn) is used as the reference value, which is
subsequently referred to as C3D. This results in 9·9=81
crosstalk classes for middle TSVs (0C3D to (8+8λd)C3D),
and 3·5·5=75 crosstalk classes for edge TSVs (λsC3D to
(2+4λe+4λd+λs)C3D). The factors λd, λe and λs, equal
to Cd/C3D, Ce/C3D and Cs/C3D, respectively, are independent
of the TSV length. Consequently, they provide an abstract
and universal TSV crosstalk classification, similar to the
traditional one for the planar metal wires.

The capacitance model for hexagonal TSV bundles is
depicted in Fig. 2.b. Again, due to the Faraday cage effect
only capacitances between direct adjacent TSVs are con-
sidered. In hexagonal arrangements the distance between
every adjacent TSV pair is constant. Thus, the capacitance
value between every adjacent TSV pair in the middle of
the arrangement is Cn,h, which is used as a reference value
C3D,h for the crosstalk classification. Only edge TSVs
have a ground-capacitance Cs,h, and the capacitance value
between two edge TSVs is Cn,h. λe,0 and λe,h are used
to describe the relation between the capacitance values at
the edges and the reference value C3D,h. This results in 13
crosstalk classes for a TSV in the middle of a hexagonal
TSV arrangement: 0C3D to 12C3D. The crosstalk of a TSV
located at an edge of a hexagonal arrangement is classified
in 35 classes: λs,hC3D,h to (6+4λe,h+λs,h)C3D,h.

Finally, we want to mention that for both TSV topolo-
gies the sizes of the self-capacitances Cs and Cs,h depend on
the surrounding of the TSV arrangements (Keep-out-Zone
(KOZ) width [24], ground ring [15], etc.). For a KOZ equal
to four times the minimum TSV pitch, and a substrate
grounding after the KOZ, parasitic extractions result in
normalized capacitance values λs and λs,h of ca. 0.6-1.1,
as shown in Section 3 of this work.

3. Limitations of previous CACs for 3D ICs

In this section we discuss the limitations of existing
CAC techniques for 3D ICs. Crosstalk avoidance coding
was initially proposed for metal wires. The idea of these tra-
ditional 2D CACs is to limit the overall maximum crosstalk
of the metal wires as it determines the interconnect perfor-
mance (delay, switching noise approx. ∼ maxk,i{Ceff,i})
[4]. For example, in contrast to an unencoded (4C ) 2D bus,
in a 3C and in a 2C encoded 2D bus the crosstalk a metal
wire experiences never exceeds 3Cc and 2Cc, respectively.
However, besides the system performance, the power con-
sumption is an important design metric. In contrast to
the performance of the interconnects, determined by the
maximum/peak crosstalk value, their dynamic power con-
sumption is proportional to the sum of the mean crosstalk
values (P ∼ meank{

∑
i Ceff,i}) [8]. Thus, a wide set of

low-power coding techniques have been proposed which
reduce the metal wire power consumption by reducing the
expected value of

∑
i Ceff,i. Some existing 2D CACs for

metal wires also result in drastically reduced mean Ceff,i-
values [4]. Thus, these coding techniques are low-power 2D
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Table 1: (Normalized) capacitance values in modern TSV bundles
TSV dim. Array Model Hexagonal Model
rtsv dtsv C ′3D λd λe λs

C ′3D,h λe,h λs,h
[µm] [µm] [aF/µm] [aF/µm]

1 4 82 0.32 1.35 1.03 72 1.25 0.69
1 4.5 79 0.34 1.36 1.14 71 1.28 0.71
2 8 94 0.30 1.35 0.90 81 1.25 0.62
2 8.5 90 0.31 1.35 0.96 78 1.26 0.62

CACs which can be used to optimize the power consump-
tion and the performance of metal wires, which are used in
3D ICs for the planar interconnects. However, traditional
2D CACs initially fail to optimize the crosstalk of TSVs,
which are used in 3D ICs for the vertical interconnects.

Thus, the idea of crosstalk avoidance coding was also in-
vestigated for TSVs (3D CACs) [16–18]. However, these ex-
isting 3D CACs only aim to reduce the maximum crosstalk
in TSV arrays, while they leave metal wires and hexagonal
TSV arrangements unoptimized. Furthermore, the large
bit overheads of existing 3D CACs lead to a drastic increase
in the TSV power consumption which often prohibits the
use of these techniques. However, the biggest limitation
of existing 3D CACs for TSV arrays is that their real cod-
ing gain is far less than previously reported. To outline
why, we first analyze the (normalized) capacitance values,
reported in Table 1, for modern TSV arrays, obtained by
parasitic extractions with the Ansys Q3D EM wave solver
[25]. The parasitics are extracted for 5×5 TSV arrays
with a KOZ equal to four times the minimum TSV pitch.
The analyzed TSV dimensions (pitch: dtsv; radius: rtsv)
correspond with the ones reported for the 2015-2018 time
slot of the International Technology Roadmap for Semi-
conductors (ITRS) 2013. Since C3D is reported per unit
length (C ′3D = C3D/ltsv), the results can be used for all TSV
lengths ltsv. The ITRS did not report the expected TSV
liner thickness tox. According to existing process nodes,
we choose tox = rtsv/5. The substrate is Boron (p) doped
and has a conductivity of 10 S/m. A TSV, its dielectric and
the substrate form a metal oxide semiconductor (MOS)
junction. Thus, in the substrate, a TSV is surrounded
by a depletion region [26]. For the parasitic extractions,
depletion regions are modeled as areas where the substrate
has no free charge carriers (σ = 0) [6]. Therefore, the width
of a depletion region is calculated for every geometrical
variation by means of the exact Poisson’s equation under
the assumption of an average TSV voltage of Vdd/2 = 0.5 V.
For the sake of completeness, also the model coefficients for
hexagonal TSV bundles are reported in Table 1. To obtain
these coefficients, parasitic extractions for arrangements
containing 16 TSVs in three hexagons (see Hex3 in Fig. 7
on page 9) are analyzed.

According to Table 1, for random patterns, the maxi-
mum crosstalk in a modern TSV array is approx. 10.5C3D

for the middle TSVs ((8+8λd)C3D) and approx. 9.7C3D

for the edge TSVs ((2+4λe+4λd+λs)C3D). For the deriva-
tion of all previous TSV CACs, the edge effects are not
considered and the efficiency of the coding approaches is

only evaluated for a TSV in the middle of an array. Ex-
isting CACs have in common that, for each TSV, they
reduce the maximum amount of adjacent TSVs switching
in the opposite direction. For example, the 6C 3D CAC
[16] simply limits the maximum amount of orthogonal ad-
jacent aggressor TSVs switching in the opposite direction
to three. When three orthogonal adjacent aggressor TSVs
switch in the opposite direction, the remaining one always
switches in the same direction. Consequently, for a middle
TSV, the maximum crosstalk is reduced to (6+8λd)C3D

(approx. 8.5C3D). Edge TSVs have a maximum of three or-
thogonal neighbors/aggressors. Thus, the 6C 3D CAC [16]
coding does not provide an optimization of the crosstalk
of an edge TSV. Coded and unencoded, their maximum
capacitive crosstalk is approx. 9.7C3D. Thus, the worst
case crosstalk/delay for the encoded patterns occurs at the
edges. Consequently, the edge effects reduce the actual cod-
ing efficiency. In the same way one can show that all other
previous TSV CACs actually result in significantly lower
reductions in the crosstalk delay than previously reported.

To quantify the actual coding efficiencies, we reanalyze
the delay reductions of promising 3D CAC approaches [16–
18]. The 4LAT coding [17] limits the number of maximum
adjacent switching TSVs to four. Consequently, for each
TSV i, maximum three δi,j-values can be two. The 6C-
FNS coding [18] limits the crosstalk of each middle TSV
to 6.5C, where an orthogonal capacitance value (Cn or Ce)
is equal to 1C and a diagonal capacitance value (Cd) is
equal to 0.25C. The 6C[16] and the 4LAT [17] coding are
evaluated for the already discussed quadratic 5×5 array
with rtsv = 1µm, dtsv = 4µm and ltsv = 50µm. These
TSV dimensions correspond with the minimum global TSV
dimensions reported for the year 2018 by the ITRS. A
drawback of the 6C-FNS[18] is that it only works for 3×x
arrays. Thus, for the analysis of this 3D CAC, the array
dimensions are changed to 3×8. In contrast to the analyses
in the respective papers, where only the delay reduction
of a middle TSV is analyzed, we analyze the delay of
the edge and middle TSVs. To determine the pattern
dependent delays of the TSVs with the Spectre circuit
simulator, we use extracted complete 3π-RLC lumped
element circuits of the TSV arrays. Thus, inductance
effects are considered. In the simulations, each TSV is
driven by a two-inverter chain and the input slew rate is
1 ps. Driver strengths of the first and second inverter are 2×
and 6×, respectively. For the inverters, 22 nm Predictive
Technology Model (PTM) is used. In Fig. 3 the Spectre
simulations and the measurement of the propagation delay
from the input of the second inverter to the output of the
TSVs are illustrated for the 6C coding [16]. In this work,
we distinguish between the maximum delay of a middle
TSV (Tp,m) and the maximum delay of an edge TSV (Tp,e),
for the encoded and the unencoded patterns. In Table 2, all
measured propagation delays are shown. The table reveals
that, as expected,the worst case delay, which determines
the maximum allowed clock frequency, always occurs at
the edges for the 3D CACs, while it occurs in the middle
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Table 2: Maximum propagation delay for the middle (Tp,m) and the
edge (Tp,e) TSVs, for CAC encoded and unencoded patterns, besides
the CAC delay reduction of the middle TSVs (∆Tp,m) and the actual
overall delay reduction (∆Tp)

Pattern set Tp,m [ps] Tp,e [ps] ∆Tp,m [%] ∆Tp [%]
Unencoded 212.1 197.4 - -

6C[16] 179.6 197.5 -15.3 -6.9
4LAT [17] 171.1 192.1 -19.3 -9.4

6C-FNS[18] 148.0 197.5 -30.0 -6.9

for the unencoded scenario. Table 2 also includes the delay
reduction for middle TSVs as well as the overall TSV delay
reduction. The overall delay is obtained by taking the
maximum out of the delay values for edge and middle
TSVs. The delay reductions for the middle TSVs conform
with the ones reported in Ref. [16–18] for the overall delay
reductions. However, the results show that the edge effects
drastically decrease the true overall delay reduction and
consequently the efficiency of the CACs. For example,
the improvements in speed of the approaches 6C[16] and
4LAT [17] are less than 50 % of their previous expected
values. For the recently most promising 6C-FNS coding
[18], the true delay reduction is less than one fourth of the
previously expected value (6.9 % instead of 30 %). The first
reason for this dramatic decrease in the coding efficiency is
the neglected edge effects. The second one is the generally
unconsidered edge TSVs. The 6C-FNS coding approach
simply limits the maximum crosstalk of the middle TSVs to
6.5C (e.g. 6Cn+2Cd ), while the maximum coupling of the
edge TSVs remains unoptimized. If all surrounding TSVs
of a TSV located at a single edge switch in the opposite
direction, its coupling is equal to 2Cn+4Ce+4Cd, which
is equal to 7C according to the crosstalk classification in
[18]. Therefore, the previously proposed 6C-FNS encoding
is actually only a 7C-FNS encoding.

The (bit) overhead of an n-bit CAC is defined as:

OH(n) =
m− n
n

, (4)

where n and m are the bit widths of the input and the

code words, respectively. The existing 3D CAC techniques
require asymptotic overheads (limn→∞OH(n)) of 44-80 %.
These high bit overheads are the source of the increased
overall TSV power consumption for existing 3D CACs as
they surpass the power savings per TSV [5].

In summary, we identified three limitations of current
3D CACs. Firstly, they only reduce the crosstalk of TSV
arrays, while they leave hexagonal arrangements and metal
wires unaffected. Secondly, due to the edge effects their
actual crosstalk reduction is rather poor and does not justify
their high overhead costs. And last but not least, the high
overhead costs lead to a dramatic increase in the TSV
power consumption. These consideration, show the need
for new crosstalk avoidance methods for 3D integration,
which take the edge effects, the metal wires and the power
consumption into account.

4. Proposed crosstalk avoidance technique

In this section we derive step by step a 3D CAC tech-
nique which overcomes all previously outlined limitations
of existing techniques. In Subsection 4.1 we present a TSV
CAC approach that overcomes the limitations due to the
edge effects. Furthermore, the presented TSV CAC ap-
proach is no longer restricted to a specific TSV topology.
In Subsection 4.2 we show how our TSV CAC can be ex-
tended to the first 3D CAC which optimizes the TSV and
the metal wire crosstalk simultaneously. Finally, this 3D
CAC is extended to low-power 3D CAC which can increase
the performance of the TSVs and the metal wires while it
simultaneously decreases their power consumption.

4.1. General TSV CAC approach

Here, we present a new CAC approach for TSV arrange-
ments, called ωm/ωe TSV CAC. The presented coding
technique overcomes the limitations of previous 3D CAC
approaches which arise due to the edge effects. In detail:
the presented coding approach does not only reduce the
crosstalk of middle TSVs, it also reduces the crosstalk of
edge TSVs. Furthermore, the presented approach is not
limited to a specific topology and is thus applicable for
rectangular arrays as well as hexagonal bundles.

The general idea is to reduce the maximum possible
effective capacitance of each middle and each edge TSV
by at least ωmC3D(,h) and ωeC3D(,h), respectively. Con-
sequently, the maximum crosstalk class of a TSVs in the
middle of an array is reduced to

(8 + 8λd − ωm)C3D, (5)

while the maximum crosstalk class of TSVs at an array
edge is reduced to

(2 + 4λe + 4λd + λs − ωe)C3D. (6)

The maximum crosstalk class of TSVs in the middle of
a hexagonal arrangement is reduced to

(12− ωm)C3D,h, (7)
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while the maximum crosstalk class of the TSVs at an edge
of a hexagonal arrangement is reduced to

(6 + 4λe,h + λs,h − ωe)C3D,h. (8)

As shown in Table 1, for unencoded patterns, the max-
imum crosstalk of a middle TSV is slightly bigger than for
an edge TSVs. Thus, in order to obtain the most efficient
coding scheme, if possible, ωm should be slightly bigger
than ωe.

4.2. 3D CAC technique

In this subsection we present a coding technique which
combines the previously introduced ωm/ωe TSV coding
approach with a traditional 2D CAC to obtain a 3D CAC
which simultaneously reduces the TSV and the metal wire
crosstalk. The technique is based on existing 2D CACs, as
they show to effectively reduce the metal wire crosstalk.
We propose to exploit the bit level properties of a 2D CAC
encoded pattern set by a fixed mapping of the bits onto a
TSV arrangement that results in a ωm/ωe TSV CAC.

Note that hereby the global signal-to-TSV-array map-
ping remains optimized. With other words, only the map-
ping within the individual TSV arrays is affected. The
effect of this local routing is marginal as TSV parasitics are
dominant. Additionally, due to KOZ restrictions no active
components are located nearby TSV arrays. Thus, we do
not face a metal-layer-utilization problem and the mapping
does not lead in an area overhead. To quantify precisely
the additional costs of the approach presented in this work,
we analyze a 3×3 TSV array, including the local routing,
for a commercial technology and TSVs with a radius of
2µm and a minimum pitch of 8µm. The worst-case rout-
ing/mapping only increases the parasitics by a maximum
of 0.5 %, versus a routing which aims for a local metal
wire length minimization. However, for our later proposed
systematic mapping, the parasitic increase compared to
a column-by-row mapping is not even noticeable. Thus,
we can state that the overhead costs for a crosstalk aware
bit-to-TSV mapping are negligible.

Besides this mapping, our approach is completely con-
structed of encoder/decoder pairs known from 2D crosstalk
avoidance coding. An in-depth explanation of the imple-
mentation of these well known circuits can be found in Ref.
[4], among others, and is thus not included in this work.
However, For clarification, we repeat the fundamental ideas
of the used 2D CACs. Memoryless 2C CACs are the most
popular 2D CACs and have been extensively studied in the
past [27–30]. Two different data encoding methods exist
for 2C bus encoding: Forbidden-Pattern-Free (FPF) [29]
and Forbidden-Transmission-Free (FTF) [30] encoding. For
both methods the encoding/decoding process can be based
on a Fibonacci numeral system (FNS) mapping, which
leads to an encoder/decoder circuit (CODEC) complex-
ity which is several magnitudes lower than for other 2C
CODECs [4]. For the FPF CAC, bit vectors that contain
a 010 or a 101 bit sequence are forbidden. For example

m−2 m−1 m 1 2V/G

max(δm,m−1)=2 max(δedge)=1

max(Ceff,m)=3C

}

m−2 m−1 m 1 2V/G

max(δm,m−1)=1 max(δedge)=1

max(Ceff,m)=2C

Group i Group i+1

}

a) FPF

b) FTF

Fig. 4: Power/ground (V/G) lines used for 2D bus partitioning and
its influence on the maximum crosstalk for: a) FPF encoding; b)
FTF encoding

111000110 is a valid FPF codeword, while 110100011 is
a forbidden bit vector. In [4] the authors prove that a
FPF bus is a 2C bus (max. crosstalk 2Cc), since, for all
i, if δi,i−1 is equal to 2, δi,i+1 is always 0 and vice versa.
For the FTF 2C CAC, all δ-values are limited to 1 by
prohibiting adjacent bits from switching in the opposite
directions. Hence, the forbidden transitions are 01→10
and 10→01. In [30] it is proven that the largest set of
FTF codewords is generated by eliminating the 01 pattern
from the b2i+1b2i boundaries, and the 10 pattern from the
b2ib2i−1 boundaries. The bit overheads for FPF and FTF
coding, are equal and asymptotically reach about 44 % [4].

We propose to use FTF data encoding, since it has some
advantages over the FPF encoding. One advantage is that
the CODEC of the FTF CAC requires a ca. 17 % lower gate
count and an almost 50 % lower delay [4]. Nevertheless,
for both encoding techniques, a FNS CAC CODEC still
exhibits a quadratic growth in complexity with the size
of the bus [4]. Thus, the CODEC complexity will quickly
cancel out any coding savings with increasing input data
widths. To overcome this limitation, the bus can be par-
titioned into small groups which are encoded individually.
In this case, a difficulty arises due to undesired crosstalk
transitions between adjacent lines of different groups. In [4],
two techniques are designed to address this issue: Group
Complement and Bit Overlapping. Both, again, cause a
significant bit and CODEC overhead, which make them
suboptimal. Here, we present a more effective technique
for the FTF data encoding. In 3D ICs power/ground lines
have to be spanned over the several dies of the system in
order to build a 3D power network. Power/ground (V/G)
lines are stable, and stable lines can be used in FTF encod-
ing for the bus partitioning as illustrated in Fig. 4.a. The
bus, containing N lines, is divided into NG groups which
are encoded individually by a n to m-bit FTF code, where
m = N/NG. Between each first bit of a group and the last
(mth) bit of the previous group, a stable (V or G) line is
placed. This bus partitioning generally causes no overhead
if the dynamic data lines as well as the stable lines are
transmitted over one 2D/3D bus which is a common case
[31, 32]. The crosstalk factor δi,s of a data line i and a
stable line s is ∆b2i [k] (Eq. 3 with ∆bj [k] = 0), and thus
limited to 1. Consequently, stable lines do not violate the

6



0 dtsv 2dtsv 3dtsv

0

dtsv

2dtsv

3dtsv

b1 b2 b3 b4

b5b6b7b8

b9 b10 b11 b12

b13b14b15b16

a)

0 dtsv 2dtsv 3dtsv

0

dtsv

2dtsv

3dtsv

b1

b2

b3

b4

b5

b10

b9

b8

b7

b6

b11

b12

b13

b16

b15

b14

b)

Fig. 5: Snake mapping of the bits bi of 2D CAC encoded data for:
a) TSV arrays; b) hexagonal TSV bundles

FTF condition. However, for FPF encoding, an additional
stable line only leads to a 3C 2D bus instead of a 2C 2D
bus, as illustrated in Fig. 4.b. For example, for m equal to
five: 00001→11110 is a valid FPF CAC sequence. If the
group is terminated by a power line (constant logical 1),
the effective pattern sequence of the group, including the
stable line, is 00011→111101. The second pattern is a for-
bidden pattern (includes 101 sequence). Thus, a stable line
violates the FPF condition and the mth-bit experiences a
crosstalk of 3Cc. Therefore, the metal wire crosstalk would
no longer be limited to 2Cc.

The second popular 2D crosstalk avoidance method is
shielding, which adds stable (V/G) lines between the data
lines to avoid worst case coupling. For the 2C shielding, the
data signal lines (D) are regularly interleaved with stable
shield lines (S), resulting in a DSDSDS... 2D layout. In
this case each data line i is shielded by two adjacent stable
lines, resulting in a metal wire crosstalk of 2∆b2i [k]Cc ≤2Cc
for each data line i. For the 3C shielding, data line pairs
are shielded by stable lines, resulting in a DDSDDS...
2D layout. Consequently, the crosstalk of a metal wire,
transmitting data bit i, is (2∆b2i [k]−∆bi[k]∆bj [k] )Cc ≤3Cc,
where j is the adjacent data line.

A mapping of all consecutive bit pairs of a 2D CAC
onto direct adjacent TSVs results in a ωm/ωe CAC for the
TSVs. One possible systematic mapping, we refer to as
Snake mapping, is illustrated in Fig. 5 for rectangular and
hexagonal TSV bundles. A 3C CAC results in a guaranteed
ωm/ωe TSV CAC with ωm = ωe = 1 (1/1 TSV CAC), and
a 2C CAC results in a guaranteed ωm/ωe TSV CAC with
ωm = ωe = 2 (2/2 TSV CAC), and so on. Thus, one can
use any CAC, designed to reduce the crosstalk of planar
metal wires, map its bits using the Snake mapping onto
a TSV arrangement and obtain a 3D CAC. If a CAC is
already used for the metal wires, this TSV CAC technique
does not require any additional overhead costs.

4.2.1. Optimal 2D CAC to 3D CAC mapping

Although, the previously introduced Snake mapping
of a 2D CAC results in a ωm/ωe TSV CAC, we need to
investigate if another mapping leads to an actual lower
maximum TSV crosstalk as, for example, a Snake mapping
does not exploit the properties of stable lines. As already

discussed, the crosstalk switching δ between any data line
and a stable line is always limited to one. Thus, stable lines
should be mapped to the middle of the TSV arrangement
in order to reduce the crosstalk of the maximum amount of
data lines. This is not considered by the systematic Snake
mapping which only exploits a reduced maximum crosstalk
switching between direct adjacent bit pairs.

Therefore, in the following we derive a mathematical
method to find the CAC optimal placement of the bits
of a given pattern set onto an interconnect structure. By
means of this mathematical method we can determine the
perfect use of any 2D CAC for TSV arrays. For an initial
mapping that maps bit i onto interconnect i, the vector of
the effective capacitances Ceff , where the ith vector entry
is Ceff,i (see Eq. 1), can be expressed as:

Ceff [k] = diag {T[k]C} , (9)

Here, diag{} returns a vector containing the diagonal en-
tries of a matrix. T presents the switching properties of
the interconnects with

Ti,j [k] =

{
∆b2i [k] for i = j

δi,j [k] else
. (10)

C is the capacitance matrix of the interconnects architec-
ture containing N lines:

C =


C1,0 C1,3 . . . C1,N

C2,1 C2,0 . . . C2,N

... C3,2
. . .

...
CN,1 . . . CN,N−1 CN,0

 . (11)

A new mapping of the bits onto the interconnects can
be realized by swapping rows and the according columns
of the switching matrix T, mathematically expressed as:

T′[k] = AπT[k]AT
π , (12)

where Aπ is a valid N×N permutation matrix [33]. A valid
permutation matrix has exactly one 1 in each column/row
while all other matrix entries are 0. The set of all valid
N×N permutation matrices is denoted as SN. To map the
ith bit of the data stream onto line j, Aπ,j,i is set to one.
For an exemplary 4-bit interconnect structure, if we want
to map bit 4 onto line 1, bit 3 onto line 2, bit 1 onto line 3
and bit 2 onto line 4:

Aπ =


0 0 0 1
0 0 1 0
1 0 0 0
0 1 0 0

 . (13)

Thus, the crosstalk for an arbitrary placement Aπ can
be determined by:

C′eff [k] = diag
{
AπT[k]AT

πC
}

. (14)

In the following we assume an independence of δi,j and
δi,l for all i, j and l. Please note that this assumption is
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true for random data and the 2D CACs discussed in this
section but not for a FPF CAC, where: maxk(δi,i−1) =
maxk(δi,i+1) = 2, but maxk(δi,i−1+δi,i+1) = 2 6= 4. For
independent δ values, the vector constituting the maximum
crosstalk quantity can be calculated by:

Ĉ ′eff = max diag
{
AπTwAT

πC
}

, (15)

where max diag{} returns the maximum diagonal entry of
a matrix. Tw is the worst case crosstalk matrix with

Tw,i,j =

{
maxk(∆b2i ) for i = j

maxk(δi,j) = maxk(∆b2i −∆bi∆bj) else
.

(16)
The characteristics of a specific pattern set are captured

by this matrix Tw. For an unencoded pattern set Tw,i,j is
equal to 2, except for the diagonal entries (i = j) which are
equal to 1. For FTF patterns, Tw,i,j is equal to 2 except
for the diagonal elements and its adjacent entries (j = i+1
and j = i−1) which are equal to 1. An additional stable
line at position x (∆bx = 0 ) leads to Tw,x,j equal to 0 for
all j, and Tw,i,x equal to 1 for all i 6= x.

The optimal CAC mapping Aπ,CACopt minimizes Ĉ ′eff ,
which can mathematically be expressed as:

Aπ,CACopt = arg min
Aπ∈SN

(
max diag{Ĉ ′eff}

)
. (17)

In practice Aπ,CACopt is determined with any of the several
optimization tools available to reduce the computational
complexity. Although, overall, up to several hundreds of
TSVs exist in modern 3D ICs, the runtime of an optimiza-
tion is negligibly low for our problem as it is executed for
each TSV bundle individually whose size is relatively small.
In this work, we use Simulated Annealing [34] to determine
the optimal mapping.

5. Extension to a low-power 3D CAC

In this section we extend our 3D CAC approach to the
first low-power 3D CAC technique, reducing the maximum
crosstalk and the power consumption of the metal wires as
well as the TSVs simultaneously.

From the underlaying 2D CACs in our 3D CAC ap-
proach, only the FTF encoding effectively reduces the metal
wire power consumption [4]. Therefore, here we only an-
alyze our ωm/ωe TSV CAC based on the FTF encoding
(with or without bus partitioning) since our objective is
a simultaneous optimization of the metal wires and the
TSVs. However, we would like to note that, as also shown
in the later Section 7, on average shielding techniques leave
the metal wire and TSV power consumption unaffected [4].
Thus, our 3D CAC technique based on shielding techniques
still overcomes the dramatic power consumption increase
of previous techniques.

Firstly, we derive a method to estimate the power con-
sumption as a function of the bit-to-interconnect mapping
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a) FTF
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0.3
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j=i+4 (E{δi,i+4})

Fig. 6: Te-values for a FTF encoded and an unencoded random data
stream

for a given data stream. The mean dynamic power con-
sumption of an interconnect structure for an initial mapping
(bi → interconnect i) is equal to [8]:

P =
V 2
ddf

2

∑
i

E{∆b2i }Ci,0 +
∑
i,j

E{δi,j}Ci,j

=
V 2
ddf

2

∑
i

E{Ceff,i}, (18)

Where E{} is the expectation operator. The first term in
the equation depends on the power supply voltage Vdd and
the clock frequency f , which are not affected by the bit-to-
interconnect mapping. Thus, we consider the mean power
consumption normalized by this factor: Pn = 2P/V 2

ddf.
Pn can be again transformed into a matrix form:

Pn = tr
{
AπTeA

T
πC
}

. (19)

For an arbitrary bit-to-interconnect mapping we obtain

P ′n = tr
{
AπTeA

T
πC
}

. (20)

In Eq. 19-20 the operator tr{} calculates the trace (sum of
diagonals entries) of a matrix. Te is a matrix containing
the switching probabilities of the lines:

Te,i,j =

{
E{∆b2i } for i = j

E{δi,j} = E{∆b2i } −E{∆bi∆bj} else
.

(21)
In the following we will briefly discuss the switching prob-
abilities for unencoded and FTF encoded data streams,
captured by Te. Thereby, we consider the transmission of
a random data stream, as it results in the highest inter-
connect power consumption [35]. Tei,j-values of both data
streams are plotted in Fig. 6. For the unencoded data (Fig.
6.b) all Te-entries are about 0.5, as the toggle probability
of each bit is 50 % (E{∆b2i }=0.5) and the bit pairs are spa-
tially uncorrelated (E{∆bi∆bj}= 0 → E{δi,j}=E{∆b2i }).
The FTF encoding (Fig. 6.a) reduces the toggle activity to
about 40 % as it induces temporal bit correlations. Further-
more, due to a induced positive correlation (E{∆bi∆bj}>0)
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between nearby bit pairs, the FTF encoding drastically
reduces some Te-entries. For direct adjacent neighbors,
the coupling switching probability Te,i,j is about 1/2 of its
value for the unencoded data. The further j is apart from
i the more the bit pairs tend to be uncorrelated, result-
ing in increased Te,i,j-values which asymptotically reach
E{∆b2i } ≈ 0.4. An additional stable line at position x
(∆bx[k]=0) leads to Te,x,j = 0 and to Te,i,x = E{∆b2i } for
all i, j (see Eq. 21 with ∆bi or ∆bj equal to 0 ).

These considerations imply that to effectively reduce
the TSV power consumption for the transmission of FTF
encoded patterns, neighboring bit pairs have to be mapped
onto TSVs connected by a large coupling capacitance. Thus,
neighboring bit pairs have to be mapped onto direct ad-
jacent TSVs. This criteria is also satisfied by our Snake
mapping, presented in the previous section as a plain CAC
mapping. Thus, the Snake mapping of FTF patterns results
in a low-power 3D CAC.

However, the Snake mapping will likely not lead to
the optimum low-power 3D CAC, as it neither considers
all variations in the Te,i,j-entries (e.g. Fig. 6 shows a
Te,i,j increase for i = 1 and a decrease for i = 2), nor the
properties of stable lines. Thus, in the following we derive
a mathematical method to obtain the optimal mapping.

Here, two costs have to be optimized by the mapping:
first the power consumption P ′n and second the maximum
crosstalk Ĉ ′eff . To combine these quantities into a single
cost function fc[Aπ], we normalize the single costs P ′n and
Ĉ ′eff by the costs for the initial placement Pn and Ĉeff :

fc[Aπ] = α
P ′n
Pn

+ (1− α)
Ĉ ′eff

Ĉeff
, (22)

where Eq. 19 and Eq. 14 are substituted for P ′n and Ĉ ′eff ,
respectively. α, which is between 0 and 1, sets the opti-
mization constraints. For α equal 0.5 the power optimiza-
tion and the crosstalk peak optimization are considered as
equivalent optimization goals. For bigger α the power con-
sumption is more and more prioritized, while for smaller
α the maximum crosstalk is more and more prioritized.
Finally, the optimal mapping, can be determined by:

Aπ,opt(α) = arg min
Aπ∈SN

(
α
P ′n
Pn

+ (1− α)
Ĉ ′eff

Ĉeff

)
, (23)

which is here solved by means of Simulated Annealing.

6. Evaluation of the proposed technique

In this section, our proposed technique is theoretically
evaluated. Subsection 6.1 analyses the reduction in the
maximum TSV crosstalk of our 3D CAC technique, for
various rectangular and hexagonal TSV arrangements when
the power consumption is neglected. In Subsection 6.2 the
trade off when the power consumption and the crosstalk
peak are simultaneously optimized is discussed.

1 Hexagon (Hex1) 2 Hexagons (Hex2) 3 Hexagons (Hex3)

5 Hexagons (Hex5) 7 Hexagons (Hex7)

Fig. 7: Analyzed hexagonal TSV arrangements

6.1. Maximum crosstalk reduction

In this subsection we determine the effect of our 3D
CAC technique on the maximum crosstalk for various TSV
arrangements. Thereby, we assume that only the maximum
crosstalk is the optimization goal. For the TSV capaci-
tance matrices, we use the ones extracted for the TSV
dimensions rtsv = 1µm; dtsv = 4µm and rtsv = 2µm;
dtsv = 8µm. The first TSV dimensions correspond with
the minimum global TSV dimensions reported by the ITRS
for the year 2018, while the second ones represent more
typical TSV dimensions in modern 3D ICs. In all analyses
the TSV length is 50µm (corresponds with the typical
substrate thickness) as the relative crosstalk reduction is
independent of this quantity. The capacitance matrices are
extracted for a wide range of rectangular and hexagonal
TSV arrangements. For the rectangular arrays, we vary the
dimensions M and N . More precisely, we analyze quadratic
arrays from 3×3 to 7×7 and non-quadratic arrays with M
equal 3 and N equal 6, 9 or 12. For the hexagonal topology,
we analyze structures composed of 1, 2, 3, 5 and 7 TSV
hexagons (Hex1-Hex7), shown in Fig. 7.

As the underlying 2D CACs in our 3D CAC technique,
we analyze: 2C/3C shielding and the FTF data encoding.
Besides the investigation of the plain FTF encoding, the
CAC is additionally investigated for the scenario where
approx. 10 % stable TSVs are present in each TSV bundle,
which are exploited for bus partitioning (FTF BP). For
example, in a 4×4 array we assume two stable lines which
are used to partition the 14 remaining data bits into three
groups (b1 to b5, b′1 to b′5 and b∗1 to b∗4).

Fig. 8 shows, for all crosstalk avoidance methods, the
maximum effective capacitance for the optimal and the
Snake mapping, besides the maximum effective capacitance
for random patterns. The figure reveals that, unencoded,
the maximum crosstalk is almost independent of the topol-
ogy (mesh or hexagonal) and the TSV count. In contrast,
Ref. [21] reported a lower maximum TSV crosstalk for
hexagonal TSV topologies. However, the according eval-
uation was only performed for TSV pitches bigger than
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Fig. 8: Effect of the proposed technique on the maximum effective TSV capacitance Ĉ′eff,max, for different underlying 2D CACs. Compared

are the two mapping methods, optimal and Snake, for: a)/b) TSV arrays, and c) hexagonal TSV bundles

10µm. With a decreasing TSV pitch, the E-field sharing
effect stronger impairs the capacitive crosstalk of TSVs in
hexagonal bundles. Thus, for recent and future TSV dimen-
sions, the maximum capacitance limit, presented in [36], is
reached for hexagonal and array arrangements. Therefore,
the crosstalk problem has about the same magnitude for
array and hexagonal arrangements.

For all TSV arrangements, the Snake mapping leads to
a 2/1+λe(,h) (ωm/ωe) CAC for FTF patterns, and if no
stable lines are present, the crosstalk reductions due to the
Snake and the optimal mapping are equivalent (neglectable
deviation). Compared to the unencoded pattern set, the
FTF CAC without bus partitioning always leads to a TSV
crosstalk reduction of 18-21 %. While we obtain the bigger
crosstalk reductions for arrays with thicker TSVs, the FTF
CAC reduction is independent of the TSV count.

As expected, when stable lines are used for shielding
or bus partitioning, the optimal TSV mapping generally
results in a noticeably higher TSV crosstalk reduction than
the Snake mapping. The only exception is the 2C shielding
for TSV arrays, where the Snake mapping is equal to the
optimal mapping. Here, the Snake mapping coincidentally
results in a 4/2+λe TSV CAC and thus completely avoids

b1 S b2 S

S b4 S b3

b5 S b6 S

s b8 S b7

a) 2C Shielding

b1 b2 S b3

S b4 b5 b6

b7 S S S

b8 b9 b10 b11

b) 3C Shielding

b1 b2 b′4 b′5

b4 b3 b′3 b′2

b5 S S b′1

b∗4 b∗3 b∗2 b∗1

c) FTF BP

Fig. 9: CAC optimal mapping of several 2D CACs onto a 4×4 array

opposite switchings between any orthogonal adjacent TSV
pair, as shown in Fig. 9.a. Thus, the maximum crosstalk is
drastically reduced to ca. 6.5C3D (reduction by ca. 40 %).
For all other analyzed scenarios, a remapping of the stable
lines, executed by the optimal mapping, increases the effi-
ciency of our 3D CAC, as we will show by an exemplary
4×4 array. However, the following discussion also applies
to hexagonal TSV bundles. For TSV arrays, the Snake
mapping of 3C shielded patterns leads to a 1+2λd/1+λd
CAC (reduction ca. 15 %). Here, a different mapping can
lead to an increased ωm, which increases the coding effi-
ciency. As illustrated in Fig. 9.b, the shields are optimally
placed in a way that ωm is increased to 2+2λd. As a result,
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the 3C shielding results in a maximum crosstalk reduction
of 22 % instead of 15 %. For the same reason, compared
to the Snake mapping, an optimal mapping of the 2C and
3C shielded patterns decreases the maximum crosstalk in
hexagonal TSV bundles by up to 43 % and 31 %, respec-
tively, while the maximum crosstalk reductions due to the
Snake mapping are 27 % and 25 %, respectively.

Also, for the FTF BP CAC, the crosstalk reduction
of the optimal mapping differs from the reduction for the
Snake mapping, which results in a 2/1+λe(,h) CAC for
rectangular and hexagonal TSV bundles. For the exem-
plary 4×4 array, the optimal mapping, shown in Fig. 9.c,
increases the ωm-value to 3+λd by mapping the two stable
lines to the middle of the array. This boosts the crosstalk
reduction from about 19 % to above 30 %. Here however,
due to the small fraction of stable TSVs, a significant in-
crease in ωm is only possible for small TSV bundles. For
bigger ones, the middle TSV over edge TSV ratio increases.
Thus, for the FTF BP, the gain of the optimal mapping
over the Snake mapping decreases with an increasing TSV
count for the hexagonal and the array bundles.

In summary, the Snake mapping is equivalent to the
optimal crosstalk mapping, if no stable lines/shields are
present. Stable lines, located at the edges for the Snake
mapping, are optimally remapped into the middle of a TSV
bundle in order to shield the maximum amount of TSVs
which generally increases the crosstalk reduction.

6.2. Simultaneous crosstalk peak and power reduction

In the following, we investigate the efficiency of our low-
power 3D CAC technique for the Snake and the optimal
bit-to-TSV mapping. Therefore, we analyze the simulta-
neous reduction in the TSV power consumption and the
maximum crosstalk due to the two mapping approaches.
The optimal bit-to-TSV mapping, determined by means of
Eq. 23, is analyzed for different α-values between 0 and
1. For this analysis, we consider a hexagonal TSV bundle
(Hex3 from Fig 6.) and two TSV arrays (4×4 and 5×5)
with rtsv = 2µm, dtsv = 8µm and ltsv = 50µm for the
transmission of random patterns, FTF encoded random
patterns, and FTF encoded random patterns with two sta-
ble lines which are used for bus partitioning (FTF BP). To
take the overhead of the FTFs as well as the different num-
bers of data TSVs into account, mean power consumptions
per effectively transmitted bit (Pb) are compared. The re-
sulting maximum crosstalk reductions (Ĉ

′
eff/Ĉeff,unco) over

the power reductions (P
′
eff/Pb,unco) are plotted in Fig. 10.

For the FTF encoding without bus partitioning, if just
the maximum crosstalk is considered for the optimal bit-
to-TSV mapping (α = 0), we obtain a crosstalk peak
reduction of about 18-19 %, but no reduction or even an
increase in the TSV power consumption. However, for all
α between 0.01 and 0.99, we obtain an equivalent maxi-
mum crosstalk reduction and furthermore a reduction in
the power consumption by about 8.5 %. Therefore, the
low-power extension of our approach enables a significant
reduction in the power consumption while providing the
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Fig. 10: Effect of our proposed low-power 3D CAC technique on the
TSV crosstalk peak and power consumption for: a) FTF encoding;
b) FTF encoding with two stable lines for bus partitioning (BP).
Exemplary for the 4×4 array, the arrows indicate the locations of the
α values

same reduction in the maximum crosstalk as the pure CAC
approach. As already discussed in the previous subsection,
the Snake mapping also leads to the minimum possible
crosstalk peak for a FTF encoding without bus partition-
ing. Our analysis shows that the Snake mapping of FTF
encoded data also decreases the power consumption by
5.7-7.5 % and thus also results in a low-power 3D CAC.
However, due to unexploited variations in the Te-values,
the Snake mapping does not result in the minimum possible
power consumption and is therefor not optimal.

When stable lines are exploited for bus partitioning
(FTF BP) there is a clearer trade-off between maximum
crosstalk and power consumption. When the power con-
sumption is neglected for the determination of the optimal
placement (α = 0) the crosstalk peak reduction is in be-
tween 25.7 % and 32.6 %, while the power consumption is
often even increased. If both quantities are weighted equally
(α = 0.5), the crosstalk peak reduction is 25.4-28.7 % and
the power reduction is 6.1-6.3 %. α = 0.5 offers a very good
trade-off for larger TSV counts and hexagonal arrange-
ments. While for the smaller 4×4 array, the degradation in
the crosstalk peak reduction compared to the optimal case
is above 3 percentage points, for the hexagonal bundle and
the 5×5 array, the degradation is less than 1 percentage
point. For a power weight of 10 % (α = 0.1), the maximum
crosstalk reduction is 25.5-32.3 % and the power reduction
is 1.1-2.2 %. Thus, a small penalty in the crosstalk peak
reduction by maximum 0.3 percentage points already re-
sults in a reduction, instead of a decrease in the power
consumption. If the power weight is nine times higher than
the maximum crosstalk weight, the power consumption re-
duction is 6.6-7.7 % while the maximum crosstalk reduction
is degraded to 18.5-22.2 %. This higher trade-off is caused
by the stable lines which can either be mapped onto the
TSVs with the overall highest accumulated capacitance in
order to reduce the power consumption, or between the
highest amount of dynamic data lines where they are the
most effective shields. Furthermore, since stable lines are
not exploited by the systematic Snake mapping, it neither

11



results in the lowest power consumption, nor in the lowest
maximum crosstalk.

Summarized, the evaluation reveals that the low-power
extension presented in this works allows for a decrease in
the power consumption while leaving the crosstalk almost
unaffected, but only if no stable lines are present. If stable
lines are present, there often is a clearer trade-off between
power consumption and maximum crosstalk. However, the
trade-off vanishes with increasing data line over stable line
ratio. Thus, for big TSV arrangements with only a few
stable TSVs, a power and crosstalk peak aware placement
results in (almost) the same maximum crosstalk reduction
as a mapping which only aims to reduce the crosstalk peaks.
Therefore, the low-power extension presented in this work
often allows for a decrease in the power consumption while
leaving the maximum crosstalk reduction and the overhead
costs unaffected.

7. Simulation results and analysis

In this section we compare the presented 2D CAC to
ωm/ωe TSV CAC mapping approach with existing 3D CAC
techniques [16–18] in terms of bit overhead, CODEC area,
as well as interconnect delay and power reduction. We
analyze the transmission of a 16-bit wide random data
stream, including all possible bit transitions, over a metal
wire bus and a TSV array or alternatively a hexagonal
TSV bundle. In the analysis, the dimensions of the global
TSVs are equal to the minimum ones reported for the
year 2018 by the ITRS (rtsv = 1µm; dtsv = 4µm and
ltsv = 50µm). The Q3D extractor is again used to extract
the TSV parasitics of the individual TSV arrangements,
which are built as square as possible. The metal wires
are assumed to be in Metal4 with a width and spacing of
0.15µm. The length of a metal wire segment is assumed
as 100µm. The wire parasitics are obtained by the TSMC
wire model, which is based on Synopsys Raphael. The
chosen value for width and spacing corresponds with the
minimum possible value.

As the underlaying 2D CACs for our 3D CAC technique,
we analyze the FTF CAC with bus partitioning (FTF BP)
and the 2C/3C shielding. Here we analyze the FTF with
bus partitioning, since one power and one ground TSV is
included in each TSV bundle. This is a common case as at
least two power/gound TSVs are required to set a power
network. Thus, the FTF encoding is partitioned into three
groups: two 5-bit to 7-bit FTF encoders and one 6-bit
to 9-bit FTF encoder. Thus, arrangements consisting of
25 TSVs are required for the 23 FTF encoded data lines
and the two stable lines. For the 2C and the 3C shielded
data, we need TSV bundles containing 32 and 24 TSVs,
respectively. For the shielding approaches, the two required
power/ground TSVs are embedded into the TSV bundles
as shields. For previous TSV CACs, except the 4LAT [17],
the encoded data lines cannot be transmitted together with
stable lines over one array without violating the pattern
conditions. Thus, for the analysis of previous 3D CACs, we

assume that a separated bundle exists for the power/ground
TSVs. To obtain the minimum overhead for the 6C[16],
4LAT [17] and 6C-FNS[18] coding, a 5×4, 3×9, and 3×8
TSV array is required, respectively. The power and delay
quantities of the interconnects are determined with Spectre
circuit simulations, employing drivers composed of two
22 nm PTM inverters of strength 2× and 6×, and the full
3π-RLC circuits of the interconnects to consider possible
inductance effects. To determine the CODEC complexity,
all encoder/decoder pairs are synthesized in a commercial
40 nm technology, and the resulting gate equivalents (GE)
are reported. Here, the CODEC delay is not reported,
since it can be hidden in a pipeline. For the growth in
coding complexity as well as the asymptotic overhead, a
minimum of 5 % of stable lines is assumed in each TSV
array.

The results are presented in Table 3. The table reveals
that the presented coding approach outperforms all existing
3D CACs significantly in all metrics. Existing 3D CACs
reduce the TSV delay by a maximum of 9.4 % (4LAT [17]),
while for the presented 3D CAC technique, the TSV de-
lay reduction can be 4× larger (2C shielding: 37.8 %).
Additionally, the 2C shielding reduces the metal wire de-
lay by 47.6 % and does not require a CODEC design. In
comparison, the 4LAT [17] approach does not optimize the
metal wire delay and requires a huge CODEC of 1,915 GE.
Furthermore, a 4LAT [17] data encoding dramatically in-
creases the TSV and metal wire power consumption by
50.1 % and 46.0 %, respectively. From the existing 3D CAC
techniques only the 6C coding [17] leads to an acceptable
interconnect power consumption as it increases the TSV
power consumption by only 8.1 %, while it decreases the
metal wire power consumption by 7 %. Here, the decrease
in the metal wire power consumption is caused by the re-
alization of the 6C 3D CAC encoder which is composed
of M N-bit 2D FPF CACs (one for each row) [17]. In
contrast, our proposed technique based on an FTF CAC
reduces the metal wire power consumption by 21.9 % and,
if extended to a low-power 3D CAC, it further decreases
the TSV power consumption by over 5 %. Without the
low-power extension, our FTF approach leaves the TSV
power consumption almost unaffected but still shows the
same metal wire power reduction (21.9 %). However, we
think here it is not worthwhile to implement our 3D CAC
technique, based on the FTF encoding, without the low
power extension, as the only drawback is an increase in
the TSV delay by less than 0.1 %, while it provides power
saving by up to 6.5 %. As expected, our approach based
on shielding techniques on average does not significantly
affect the TSV or metal wire power consumption.

Finally, it is worth mentioning that the actual perfor-
mance improvements, presented in this section, are con-
sistent with the theoretical predicted ones from Section
6 (max. deviation 1 %). This shows the accuracy of the
presented underlying crosstalk classification. Additionally,
it ones again validates that, in modern TSV arrays, induc-
tance effects are neglectable for digital signals.
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Table 3: Effect of the proposed and the existing 3D CACs on the TSV/metal wire delay (∆Tp,3D/∆Tp,2D), the TSV/metal wire power
consumption (∆P3D/∆P2D), the overhead, the CODEC gate equivalent (GE) and the CODEC growth

Method Pattern Set
Input Data Width n = 16-bit Asymptotic (limn→∞)

∆Tp,3D ∆Tp,2D Overhead CODEC ∆P3D ∆P2D Overhead CODEC Growth

This Work:
2D to ωm/ωe TSV CAC

for TSV Arrays

FTF BP (α=0) -20.4 % -47.6 % 43.8 % 411 GE 1.2 % -21.9 % 44 % O(n)
FTF BP (α=0.5) -20.3 % -47.6 % 43.8 % 411 GE -5.3 % -21.9 % 44 % O(n)

2C Shielding -37.8 % -47.6 % 87.5 % 0 GE 1.8 % 0.0 % 95 % ∅
3C Shielding -20.6 % -21.3 % 37.5 % 0 GE -1.4 % 0.0 % 45 % ∅

This Work:
2D to ωm/ωe TSV CAC
for Hex. TSV Bundles

FTF BP (α=0) -17.9 % -47.6 % 43.8 % 411 GE -2.8 % -21.9 % 44 % O(n)
FTF BP (α=0.5) -17.9 % -47.6 % 43.8 % 411 GE -5.2 % -21.9 % 44 % O(n)

2C Shielding -36.7 % -47.6 % 87.5 % 0 GE 1.2 % 0.0 % 95 % ∅
3C Shielding -20.1 % -21.3 % 37.5 % 0 GE -0.1 % 0.0 % 45 % ∅

Previous 3D CACs
for TSV Arrays

6C [16] -6.9 % 0.0 % 25.0 % 181 GE 8.1 % -7.0 % 44 % O(n1.5)
4LAT [17] -9.4 % 0.0 % 68.8 % 1915 GE 50.1 % 46.0 % 80 % O(en)

6C-FNS[18] -6.9 % 0.0 % 50.0 % 718 GE 25.7 % 19.1 % 50 % O(n)

Summarized, an FTF encoding can be exploited to
effectively reduce the crosstalk delay and the power con-
sumption simultaneously. A 2C shielding leads to the
biggest (crosstalk) delay reduction but it leaves the power
consumption almost unaffected. Furthermore, in contrast
to the FTF encoding, the high line/TSV overhead of the
2C shielding often makes the approach unsuitable, due to
the still relatively large TSV dimensions and limitations in
the available silicon area. Thus, a good overall compromise
offers the presented remapping of the FTF CAC with bus
partitioning (highlighted in Table 3), as it results in: the
lowest asymptotic overhead (44 %), the highest metal wire
crosstalk reduction, the second biggest TSV crosstalk re-
duction and the lowest power consumption. Furthermore,
in contrast to most previous 3D CACs, the encoder over-
head scales linearly when stable lines are exploited for bus
partitioning which makes the technique even applicable for
large TSV arrangements.

8. Conclusion

In this work we presented the first low-power crosstalk
avoidance technique for 3D integration, called 2D CAC
to ωm/ωe TSV CAC mapping. In the first part of this
work we have proven theoretically and by means of exper-
imental results that the edge effects make previous TSV
crosstalk avoidance techniques inefficient. We also outlined
that an efficient crosstalk avoidance method should also
reduce the metal wire, not only the TSV, crosstalk peak
and furthermore should not increase the power consump-
tion drastically. Our proposed technique overcomes all
limitations. Additionally, our approach results in the first
CAC applicable for hexagonal as well as quadratic TSV ar-
rangements. In our technique, the switching characteristics
of 2D CAC pattern sets are exploited by a bit-to-TSV map-
ping that results in a simultaneous reduction of the TSV
and metal wire crosstalk. For our approach, we analyzed
different underlying 2D CACs, with the result that our
technique always significantly outperforms all existing 3D
CACs. Our technique shows a maximum TSV and metal
wire delay reduction of 37.8 % and 47.6 %, respectively.
Hereby, the technique induces a negligible increase in the

TSV power consumption while it decreases the metal wire
power consumption by 21.9 %. In comparison, previous
approaches reduce the TSV delay by a maximum of 9.4 %
(4LAT CAC), while providing no optimization of the metal
wire delay. Additionally, the 4LAT CAC results in signifi-
cantly higher hardware costs and a dramatic increase in the
interconnect power consumption (ca. 50 %). Furthermore,
we presented an extension to our 3D CAC technique which
allows for a simultaneous power consumption and crosstalk
noise reduction of the TSVs and the metal wires in 3D
ICs. This low-power 3D CAC technique reduces the delay
and the power consumption of modern metal wire buses
by 47.6 % and 21.9 %, respectively, while it simultaneously
reduces the delay and power consumption of modern TSV
arrangements by up to 20.4 % and 5.3 %, respectively.
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