
Temporal Redundancy Latch-based Architecture for
Soft Error Mitigation

Robert Schmidt∗, Alberto García-Ortiz†, Goerschwin Fey∗†
∗ Institute of Space Systems, German Aerospace Center, 28359 Bremen, Germany {robert.schmidt,goerschwin.fey}@dlr.de

†University of Bremen, 28359 Bremen, Germany, agarcia@item.uni-bremen.de fey@informatik.uni-bremen.de

Abstract—Current transients caused by energetic particle
strikes are a serious threat for digital circuits in aerospace ap-
plications. Such single-event transients (SETs) can corrupt the
circuit state, with possibly devastating consequences. Although it
is possible to protect circuits with spatial redundancy techniques,
the area and power overhead is high. Therefore aerospace circuits
would benefit from adopting temporal redundancy instead, but
existing solutions prioritize performance over reliability. Our pro-
posed temporal redundancy latch-based architecture (TRLA) is a
standard cell, static CMOS temporal redundancy technique, with
area savings of 26%, power savings of 46%, and 14% faster circuit
operation compared to triple modular redundancy (TMR).

I. Introduction

Device shrinking is accompanied by smaller supply voltages
and circuit node capacitances, reducing noise margins and thus
reliability [13]. As a result, charge stored on circuit nodes
decreases, increasing the sensitivity to charged particles traveling
along the nodes [12]. Therefore ignoring the environmental
influence on integrated circuits, on ground level and especially
for aerospace electronics [14], is not feasible anymore. A
particular malfunction caused by energetic particle strikes are
current transients. Such single-event transients (SETs) may
corrupt the state of a latch if they happen at the feedback node,
or if they are propagated from upstream logic and sampled.

Although it is possible to mitigate SETs with spatial redun-
dancy techniques such as modular redundancy and voting,
the area and power overhead is high. A temporal redundancy
technique which supports retrofitting of existing designs for soft
error mitigation is not available. Our proposed TRLA is a standard
cell temporal redundancy technique for aerospace applications,
with speed, area, and power benefits compared to TMR. The key
idea of TRLA is to monitor the output node of a conventional
latch for invalid signal transitions and to correct errors on the
architectural level. This paper contributes the following results:

1) A new algorithm for the local mitigation of SETs aware
of critical error states for correction on a global level (Sec-
tion III-B1).

2) A new controller and architecture with multiple-bit upset
(MBU) mitigation capabilities implementing our proposed error
correction algorithm (Section III-B2) which is able to handle
the same amount of errors as a reference TMR implementation
(Section IV).

3) Quantitative area, speed, and power results for a commer-
cial 90 nm standard cell library with area savings of 26 %, power
savings of 46 %, while being 14 % faster compared to a reference
TMR implementation (Section IV).

II. related work

Several error detection sequential (EDS) circuits have been
proposed, which rely either on transition detectors, supply
rail monitors, or double sampling with comparison to detect
late signals. The Razor2 latch [7] is augmented with a delay
chain and rising edge enabled dynamic transition detector to
detect late signals. Transition detector with time borrowing also
employs a transition detector with dynamic evaluation, whereas
double sampling with time borrowing (DSTB), Bubble Razor,
and TIMBER latches use a double sampling and comparison
strategy [4, 6, 9]. The Razor Lite flip-flop [10] monitors virtual
supply rails, stemming from the dynamic design style, to detect
invalid signal transitions after the sampling edge.

Most EDS circuits resort to a dynamic CMOS design style,
instead of more noise-robust [11] static CMOS, which is an adop-
tion burden, especially in the aerospace context where the trend
is towards commercial off-the-shelf FPGA implementations [1, 5,
8]. Double sampling and comparison for error detection is not
suited due to metastability problems [2] arising from frequent
signal transitions around the sampling edge.

Because manual (re)design for EDSs is inefficient and error-
prone, transparent electronic design automation supported so-
lutions are preferred. The elegant local error handling and
transparent EDS retrofitting in Bubble Razor [9] is therefore
favored over DSTB [4] or Razor2 [7], but it lacks SET mitigation
capabilities. We fill this gap with our static, standard cell based
EDS with SET mitigation capabilities presented in Section III.

While error detection is handled by the EDS, error correction
can be accomplished by repetition of erroneous computations.
With a dual-phase latch-based data path it is possible to delay
the sampling of error-flagged data at the receiving latch until the
correct result from the repeated computation is available.

Delayed sampling for local error correction was successfully
demonstrated for timing errors by the Bubble Razor algorithm
[9], which assumes that invalid signal transitions indicate late
but nevertheless correct signal values. Our proposed algorithm
in Section III-B1 drops the assumption of correct late signals to
handle late and invalid signal values, expanding the correction
capabilities to errors stemming from SETs.

III. Mitigating soft errors

In our temporal redundancy latch-based architecture the
problem of error detection and correction is split up between
the novel static CMOS EDS, presented in Section III-A, and the



R

S

Latch FSMPulse generator

OR-Tree

OR-Tree

EDS
group

OR-Tree

data_out

enable

stall_out
crit_out

RN

clk_a

neighbor_stall

upstream_err
clk_b

clk_b RNclk_a RN

data

Figure 1. TRLA cluster architecture.

architecture for local error correction in Section III-B which
implements our algorithm for SET mitigation.

The general idea of TRLA is to replace each unprotected latch
in the design with our EDS to detect errors. The error information
of each EDS is gathered and evaluated by logic that controls an
enable signal for each latch to correct errors by recomputation.

A. Error detection

Our TRLA EDS resorts to a transition detector to monitor
the output node of a conventional latch, as displayed in the
upper right corner of Fig. 2. Late signal transitions during the
transparent phase of the latch excite the transition detector
which generates a pulse response that is captured by an SR-
latch. The SR-latch is protected against single-event upsets
(SEUs) by triplication and majority voting. The area requirements
are alleviated by sharing of the protected SR-latch between
multiple EDSs. To enable correction by recomputation, each EDS
multiplexes between its input data and feedback from the output
node, as shown in the upper left corner of Fig. 2. An SET at
the output node close to the sampling edge is flagged by the
late error detector in the bottom right corner of Fig. 2 and
requires special treatment due to the propagation delay of the
error correction logic.

The EDS is not exposed to the increased metastability risks
described earlier, because it samples on the falling edge, which
is not exposed to frequent data signal changes since the propa-
gation delay tpd of all paths feeding into the EDS are sufficiently
short by design: tpd ≤ T − tcq with T as the cycle time and the
clock-to-q delay of the latch tcq. Compared to most EDSs heritage
in timing speculative designs, where late signals are frequent
by design and increase the risk for metastability [2], TRLA does
not expose the sampling edge to frequent changes and therefore
avoids a mean time between failures (MTBF) degradation.

The focus of this work is on mitigation of single-event
effects (SEEs), therefore the pulse gating of the SR-latch is kept
to a minimum, instead of increased pulse-widths leading to
controlled time-borrowing. In this setup our EDS operates like a
pulsed latch without further time-borrowing.

B. Error correction

While error detection is handled by the EDS, error correction
is accomplished by repetition of erroneous computations. Due
to the dual-phase latch-based data path it is possible to delay
the sampling of error-flagged data at the receiving latch until
the correct result from the repeated computation is available.
Our algorithm in Section III-B1 describes the behavior of
a distributed controller responsible for controlling each EDS
enable signal to implement the correction by recomputation.

C

Latch

D

E

RN

R

ERR
S

R

Latch L

Q

Transition detector

Error detection gate
Late error detector

Figure 2. Static CMOS EDS with transition detector, late error detector, and
optional gating for time-borrowing.

This controller is implemented as a finite state machine (FSM)
alongside the EDSs and additional error signal evaluation logic,
forming a cluster, as described in Section III-B2. Clusters group
EDSs with a controller; the smallest possible cluster combines
only one EDS and controller. They abstract an arbitrary number
of latches in the described algorithm.

1) Algorithm: If a cluster of several EDSs, which operate on
the same phase, disable sampling, this cluster of EDSs stalls.
Due to the dual-phase clocking scheme, the minimum number
of clusters is two. Clusters are connected with other clusters
or primary in- and outputs, inheriting the flow of data from
the unprotected source design. Thus one needs to differentiate
between downstream clusters, which are neighbor clusters in
direction of the data flow, and upstream clusters, as neighbors in
reverse data flow direction.

Our algorithm evaluates error conditions within its own and
in neighbor clusters, to decide about stalling of the EDS in its
own cluster. This stalling scheme, as shown in Fig. 3 for two
clusters is needed for successful preservation of valid signals
and avoidance of sampling invalid ones. In Fig. 3, an invalid
signal is sampled and then corrected by recomputation, followed
by detection of a late error in the shaded region which is rated
critical by the controller. Dotted clock pulses indicate that the
corresponding EDSs do not sample new data. Arrows are used
to show the exchange of error information and to highlight
where stalling decisions are taken. Local error and late error are
aggregated signals from all EDSs nodes labeled “ERR” and “L”
in Fig. 2. The algorithm in Fig. 4 describes the behavior of the
system, consisting of multiple interconnected FSMs in context of
the architecture, described in Section III-B2, to correct errors.

Compared to Bubble Razor, which assumes late but neverthe-
less correct signal values, our algorithm interprets late signals as
manifestations of SETs, and ensures that the circuit state is not
corrupted. The lean implementation of Bubble Razor’s control
logic, which merges error signals from the data path into the
evaluation of the exchanged stalling information [9], is possible
due to the restriction to timing errors. Thus local soft error



CriticalCorrection

local

global

clock
φn, control

φp, control

φn, data

φp, data

local errorn

enablen

local errorp

enablep

late errorp

critical

Figure 3. Stalling scheme for two clusters.

1: function critical(error information)
2: c← late error detected
3: c← c ∨ local error during upstream error
4: return c
5: end function
6: procedure Correction(state, error information)
7: if ¬critical(error information) then
8: for all cluster do . in parallel
9: if local error then

10: Stall neighbors to recompute
11: Sample recomputed value
12: repeat
13: Stall local EDSs
14: until Downstream correctly samples
15: end if
16: end for
17: else
18: Escalate error to system level
19: Disable all EDSs for possible state recovery
20: end if
21: end procedure

Figure 4. Correction algorithm

correction by recomputation is not possible for Bubble Razor.
Contrary our algorithms accounts for the correction of soft errors
in a conflict-aware manner, which requires a differentiation
between errors and stalling information.

2) Distributed implementation: We implement our algorithm
using FSMs responsible for exchanging error information be-
tween neighbor clusters and control of the data path latch enable
signal. Each cluster resorts to the same FSM design but operates
it on the clock phase complementary to its neighbor clusters. The
state machine in Fig. 5b evaluates four sources of information:
1) Stalling information from all neighbors i1; 2) Detected errors
in clusters which are part of the upstream from a data path
perspective i2; 3) Locally detected errors which happened in
the cluster controlled by the FSM i3; and 4) Locally detected
late errors. The FSM generates three signals for latch control
and communication of errors: 1) Stalling information sent to
up- and downstream neighbors o1; 2) Local EDSs enable signal
o2; and 3) Critical state reached, local correction not possible
o3. Furthermore, local errors detected by the EDSs are always
communicated to the downstream neighbors regardless of FSM
state. Locally detected late errors always transfer the FSM into
the critical state S c. The corresponding edges are excluded from
Fig. 5b for clarity. The mealy automaton starts in the idle state
S i, and given a local error the automaton transitions to the long

Table I
Relative comparison to the unprotected dual-phase latch-based design.

Design A/µm2 fmax/MHz Arel fmax,rel

Unprotected 21579.4 168.1 1.00 1.00
TRLA 71414.5 156.3 3.31 0.93
TMR 96567.0 137.0 4.48 0.82

suppressing state S l followed by the resume state S r. The short
or quick suppressing state S s is reached if neighbors are stalling
or upstream cluster errors are detected. The critical state S c

is entered once error conditions arise which are not locally
correctable by the automaton.

Our cluster architecture determines the information sources of
each FSM, arranging them to perform according to our algorithm.
The cluster architecture is shown in Fig. 1 and allows to share
components between our EDS to save area. Each cluster has a
polarity stemming from data path clock phase requirements. The
pictured cluster is of negative polarity with respect to the clock
of the original synchronous design. The EDSs share a single
pulse generator for the error detection gate and a single error
signal storage SR-latch. The output of the SR-Latch is sampled
by a level-sensitive latch operating on the same phase as the
data path latches, to preserve the error information and to detect
late errors. An additional pulse generator periodically resets the
error signal storage SR-latch on the falling clock edge of the
phase the cluster control logic operates on. This erases outdated
error information prior to the next transparent data path period,
implicitly allowing arrival of new data during the opaque phase
of the data path latches.

All stateful elements in the control path of our architecture
resort to triplication and majority voting to prevent MTBF
degradation due to SEUs. The area overhead is benign because the
state of the control path is only captured in the error information
latches and the state vector of the controller FSM.

IV. Experimental results

The TMR and TRLA-protected designs compared in Table I
are protected versions of the same unprotected J1 CPU design
[3]. The TMR contains complete triplication of the fan-in logic,
latches, and redundant voting. The standard cell library used
for synthesis contains specialized majority voting cells. Still
the TRLA solution requires 26 % less area compared to TMR.
In contrast to the sequential error correction in TMR our TRLA
protection mechanism operates in parallel to the actual data path
and allows to operate the circuit 14 % faster.

To estimate the impact of the circuit modifications, gate-
level simulations with back annotated timing information are
augmented with a simulated radiation source. The radiation
source is written as a script that traverses the circuit to find all
nets in the fan-in of latches. For a requested number of particles
a random signal level (0 or 1) is placed on nets uniformly chosen
in space and time, simulating an SET, resulting in different
combinations of SETs, SEUs, and MBU. During reset of the circuit
the radiation source is disabled. Once the circuit is in a known
state, the irradiation starts while the CPU endures a heavy load
on the arithmetic, control and memory system to maximize



Error logic
and storage

FSM
on φn, control

Latches
on φn, data

Error logic
and storage

FSM
on φp, control

Latches
on φp, data

Logic
n

Logic
nn n Outputs

m ≤ n

i
Inputs

Upstream Downstream

(a) Protected circuit with controlled data path latches

S i

S l

S s

S r

S c

001/000

010,110,100/010

011,101,111/000

000/000

—/100

000/010

100/010

¬(100)/010

—/110

—/011

(b) Mealy automaton
Figure 5. Block diagram of circuit protected by TRLA and error correction automaton.

100 101 102 103

0

0.2

0.4

0.6

0.8

1

Particles during 785 ·T

Su
cc

es
sf

ul
ru

ns
no

rm
al

iz
ed

to
re

pe
tit

io
ns

Unprotected
TRLA
TMR

Figure 6. Number of program executions without deviations over number of
radiated particles.

Table II
Switching activity based power consumption estimates for runs in Fig. 6.

Design Total power P/mW Relative increase

Unprotected 2.9577 ± 0.0239 1.00
TRLA 3.1992 ± 0.1478 1.08
TMR 5.9755 ± 0.0005 2.02

the impact of each fault on the observable outputs. All signal
switching activities are recorded and used for power estimation
with information from the standard cell library using industry
grade tools.

The simulations are repeated for each circuit to gather a
dataset for all chosen numbers of radiated particles that cause
an SEE during program execution. Fig. 6 shows the number
of successful program executions for each amount of radiated
particles. While the unprotected design starts to decay at the
presence of several particles, both TMR and TRLA ensure correct
operation. The consumed power estimates in Table II are the
arithmetic mean over all simulation runs. For the TMR protected
design the consumed power is nearly static with only small
deviations due to the regular voting. In contrast our TRLA error
correction operates on demand, resulting in more deviations and
less total power consumed.

V. Conclusion
Our temporal redundancy latch-based architecture (TRLA)

protects arbitrary single-clock synchronous digital circuits.
Compared to triple modular redundancy and voting, we save
26 % area, 46 % in consumed power, while being able to
operate 14 % faster. Gate-level simulations are used to show
the mitigation capabilities of the architecture, with reports of
complete error mitigation in all runs conducted even for artificial
high fluence rates. The presented toolflow allows to retrofit
designs without designer intervention, making TRLA a prime
candidate for retrofitting of temporal redundancy for already
existing designs resorting exclusively to static CMOS circuits.

Acknowledgment
This project has received funding from the European Union’s

Horizon 2020 research and innovation programme under grant
agreement No 637616.

References
[1] S. Avramenko et al. On the Robustness of DCT-based Compression

Algorithms for Space Applications. IEEE Int. Symp. on On-Line Testing
and Robust Syst. Design. (2016).

[2] S. Beer et al. Metastability in Better-Than-Worst-Case Designs. 20th
IEEE Int. Symp. on Asynchronous Circuits and Syst. (2014), p. 101–102.

[3] J. Bowman. J1: a small Forth CPU Core for FPGAs. 26th EuroForth
Conf. (2010), p. 43–46.

[4] K. A. Bowman et al. (2009). Energy-Efficient and Metastability-Immune
Resilient Circuits for Dynamic Variation Tolerance. IEEE J. Solid-State
Circuits 44(1):49–63.

[5] S. Campagna et al. A framework to support the design of COTS-based
reliable space computers for on-board data handling. 16th IEEE Int.
On-Line Testing Symp. (2010), p. 91–96.

[6] M. R. Choudhury et al. (2014). Time-Borrowing Circuit Designs and
Hardware Prototyping for Timing Error Resilience. IEEE Trans. Comput.
63(2):497–509.

[7] S. Das et al. (2009). RazorII: In Situ Error Detection and Correction for
PVT and SER Tolerance. IEEE J. Solid-State Circuits 44(1):32–48.

[8] S. Esposito et al. (2015). COTS-Based High-Performance Computing
for Space Applications. IEEE Trans. Nucl. Sci. 62(6):2687–2694.

[9] M. Fojtik et al. (2013). Bubble Razor: Eliminating Timing Margins in
an ARM Cortex-M3 Processor in 45 nm CMOS Using Architecturally
Independent Error Detection and Correction. IEEE J. Solid-State
Circuits 48(1):66–81.

[10] I. Kwon et al. (2014). Razor-Lite: A Light-Weight Register for Error
Detection by Observing Virtual Supply Rails. IEEE J. Solid-State
Circuits 49(9).

[11] P. Larsson et al. (1994). Noise in Digital Dynamic CMOS Circuits.
IEEE J. Solid-State Circuits 29(6):655–662.

[12] M. Nicolaidis (2005). Design for Soft Error Mitigation. IEEE Trans.
Device Mater. Rel. 5(3):405–418.

[13] M. Nicolaidis. Time Redundancy Based Soft-Error Tolerance to Rescue
Nanometer Technologies. 17th IEEE VLSI Test Symp. (1999), p. 86–94.

[14] Space engineering: Space environment. Standard ECSS-E-ST-10-04C.
ESA Requirements and Standards Divison, 2008.


