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Abstract—In order to reduce the communication cost of
wireless sensor nodes, many methods have been proposed to
reduce the transmission rate and reconstruct the signal based on
incomplete information. Among them, Kalman filter (KF) based
methods provide the optimal reconstruction for the monitoring
of linear systems with Gaussian noise. They require sensor
nodes to intermittently transmit either the raw data or the
preprocessed data mainly depending on nodes’ processing ca-
pabilities. However, it is unclear whether the improvement of the
reconstruction quality after using local processing is significant
enough to compensate the energy overhead. To solve this question,
this work studies three KF-based reconstruction solutions under
different transmission strategies, considering the measurement
noise, the transmission rate reduction and the packet loss. The
reconstruction quality of each method is formulated with the help
of Markov chain and a set of algebraic Riccati equations (AREs);
the corresponding energy cost of the sensor node is further
measured by the physical implementation. The results indicate
that the advantage of using local processing is very sensitive to
some parameters, e.g., the packet size. In addition, the three
KF-based methods are compared with compressive sensing. Both
simulation and experimental results demonstrate the superiority
of the KF-based approaches for the analyzed linear systems.

Index Terms—Wireless sensor nodes, Kalman filter, energy
conservation, linear systems, compressive sensing.

I. INTRODUCTION

THE combination of sensing and wireless communication
technologies has enabled a wide range of applications [1].

Due to the limited resources of wireless sensor nodes, en-
ergy efficiency is typically the primary concern for almost
any application [2]–[4]. As widely recognized, one of the
most energy-intensive processes for a sensor node is radio
communication [1]. Besides the energy consumption of data
packets transmission, extra energy is also required by overhead
activities, such as control packets, idle listening, overhearing,
collision, etc., as analyzed in [5]. Thus, reducing the transmis-
sion rate is an efficient strategy to decrease the communication
cost. However, the reduction of the transmission rate leads
to the loss of information for the users. How to reconstruct
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the signal based on incomplete information is an important
research topic.

The typical solutions for transmission rate reduction
and reconstruction are either model-based [6]–[12] or
sampling/transforming-based [13]–[15]. Time series forecast-
ing and stochastic modeling are two common model-based
approaches. Based on the established model, the sink is able
to predict the future data without periodically receiving the
data packet from a sensor node. To guarantee the prediction
accuracy, the same model is usually implemented by the sensor
node simultaneously and when an event happens, e.g., the
error is larger than a threshold, an update is transmitted to the
sink. However, these model-based methods either are sensitive
to the reliability of the wireless communication for model
updating [6]–[9] or require intensive computation overhead to
construct the probability models [10]–[12]. Alternatively, the
transmission rate can be reduced with the help of sampling or
transform theories [13]–[15]. The traditional methods usually
require the sensor node to store enough samples and transmit
fewer data after preprocessing [13], [14], which causes extra
delay in the network. In contrast, a novel sensing theory,
named compressive sensing (CS) [15], achieves sample-with-
compress. When the signal is sparse in a basis expansion,
the sampling rate of the sensor node can be significantly
below the Nyquist rate and the sink node can reconstruct the
original signal with the incomplete information. Nevertheless,
the quality of the reconstructed signals may be unable to
satisfy the accuracy requirements in addition to the complexity
of the reconstruction algorithm.

Besides the respective drawback of each above mentioned
method, one common limitation of them is that they can only
supply approximations of the raw measurements, which are
inevitably corrupted by noise in practical applications [1], [16].
It makes the reconstructions obtained using these schemes
unable to reflect the true state of the monitored system. In
this sense, the approaches based on the filtering techniques
could produce more accurate reconstructions by removing the
noise. When the monitored system satisfies a state space model
with normal distributed noise, the Kalman filter (KF) provides
the optimal state estimate from the noisy measurements in the
sense of minimum mean square error (MMSE) [17].

A number of approaches have been proposed to reduce
the transmission rate based on KF [18]–[20], [22]–[25]. The
sensor node can either transmit the raw data [18], [26] or
the preprocessed data by using a local KF [19], [20], [22]–
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[25] and the signal is optimally reconstructed in the sink
node. For instance, in [18] each sensor node intermittently
transmits the raw data with a Bernoulli distribution and the
signal is optimally reconstructed with a modified KF. A
stochastic event-triggered transmission schedule is proposed in
[26]. Each node transmits the raw data following a stochastic
decision based on an uniformly distributed random variable
over [0, 1]. This schedule holds the Gaussian property and the
optimal reconstruction solution is obtained using a variation
of the standard KF. A dual KF (DKF) approach is presented
in [19]. Each node firstly uses a local KF to remove the
measurement noise and to produce the optimal system output
estimate. Then a pair of KFs are executed synchronously
in the receiver and sender to predict the output estimate
and guarantee the prediction accuracy, respectively. When the
prediction error is beyond the threshold, the output estimate is
transmitted to the receiver. This method is further improved by
PKF [20]. The dual KFs are replaced by a pair of k-step ahead
KF predictors and the local state estimate is transmitted instead
of the output estimate. PKF reduces the computation cost
of DKF [19] but also improves its reconstruction quality as
analyzed in [22] and [23]. Considering a packet loss channel,
a transmission schedule is obtained in [24] by solving an
optimization problem. It decides whether each sensor node
should transmit the local estimate from the KF or not. In [25],
the sensor node can randomly send either the raw data or the
local state estimate using a KF depending on the computation
capability of the sensor.

Although those KF-based approaches can reduce the trans-
mission rate and optimally reconstruct the signal with the
incomplete information, there is a lack of comprehensive com-
parison between different transmission strategies. The common
decision whether to transmit the raw data or the preprocessed
information is solely dependent on the computation capability
of the sensor node [25], [26]. However, we believe that
the achieved performance should be also considered. The
performance of the rate reduction scheme is usually measured
by the trade-off between the reconstruction quality and the
transmission rate [19], [20]. While under the same transmis-
sion rate, the energy consumption of each method could be dif-
ferent. Intuitively, intermittently transmitting the preprocessed
information, such as state estimates of a local KF, may provide
better reconstruction quality under the same transmission rate.
However, considering the computation cost of a local KF and
the potential transmission cost increment due to the increased
packet size, it is unclear whether the improvement of the
reconstruction quality is significant enough to compensate the
energy overhead in practice. This work aims to analyze and
compare the optimal reconstruction methods under different
transmission contents (with and without preprocessing) in
terms of the trade-off between reconstruction quality and
energy cost. Instead of finding the best compression strategy,
the comparison is restricted to the simplest random sampling
scheme as in CS [15] and the packet loss model as in [18].
The main contributions include:

a) This work studies three different transmission options and
provides the corresponding optimal reconstruction solu-

tions, considering the noise, the transmission compression
and the packet loss for the sensor nodes monitoring
linear dynamic systems. In contrast to the approaches that
only provide the approximations of noisy measurements,
these methods reconstruct the signal optimally in terms
of MMSE using KF.

b) The reconstruction quality of each method is analyzed
and compared under the same transmission rate reduction
scheme and packet loss model. Precise formulas for
the relation between reconstruction quality and system
parameters, transmission rate and packet loss probability
are provided.

c) The physical implementation in the motes is conducted
and the energy consumption of each method is measured.
Thereby, the performances of three KF-based methods are
compared in terms of the trade-off between energy cost
and reconstruction quality.

The rest of this paper is organized as follows. Section II
formulates the problem. Section III presents three MMSE
estimate solutions under different transmission strategies and
analyzes the reconstruction quality of each method. In Sec-
tion IV, the analyses are firstly validated and the reconstruction
quality of the three methods are compared. Then the physical
implementation is conducted to measure the energy consump-
tion and compare their performance in terms of the trade-off
between reconstruction quality and energy cost. Finally, we
conclude the work in Section V.

II. PROBLEM SETUP

This section aims to formulate precisely the problem de-
scribed in the introduction. The transmission rate reduction
scheme and the packet loss model are firstly formulated.
After studying the transmission contents, three reconstruction
problems are then presented.

Considering a linear dynamic system, the system state at
time k, denoted as xk, evolves from the state at time k − 1,
namely:

xk = Akxk−1 + wk (1)

where Ak is the transition matrix; wk ∼ N(0, Qk) accounts
for the inexactitudes of the model and has covariance Qk
(see e.g. [17]). The observation of the sensor node at time k,
denoted as zk, is mapped from xk by the observation matrix
Hk and corrupted with a zero mean white Gaussian noise vk:

zk = Hkxk + vk (2)

where vk ∼ N(0, Rk) has the covariance Rk. These two kinds
of noise are mutual uncorrelated and also uncorrelated with the
state:

E[wkv
T
j ] = 0 E[xkw

T
j ] = 0 E[xkv

T
j ] = 0, ∀j, k (3)

The system is assumed to be observable. We aim to optimally
reconstruct the real system output Hkxk in the server, taking
the noise and the following two factors into account: first,
it is inefficient for the sensor node to transmit every data
packet due to the expensive communication cost; second, the
transmitted packets may be lost caused by the unreliable chan-
nel. Following CS [15], in this paper we restrict ourselves to
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the simplest compression strategy where each node randomly
selects some time points to transmit. Let the random variable
τk denote whether the sample is transmitted at time k or
not: τk = 1 if a packet is transmitted, otherwise τk = 0.
It satisfies a Bernoulli distribution with probability p for the
value 1, i.e. pτk(1) = p. The decision at time k does not
affect the decision at time j(∀j 6= k), i.e., τk is independent
of τj . Regarding the model for packet loss, we adopt the
scheme presented in [18], where each packet can get lost
independently and is successfully received with the probability
λ. Let the random variable γk represents whether the packet
is successfully received or not. It has probability distribution
pγk(1) = λ and is independent of γj(∀j 6= k). Then, the
binary variable τkγk denotes whether the packet is received in
the server and the sequence of the binary variables from time
1 to time k, Υk = [τ1γ1, τ2γ2, · · · τkγk], represents the packet
reception process.

When the sensor node continuously transmits the raw data
to the server, the best estimate of the system output is ẑk =
E[zk|Zk], where Zk = [z1, z2, · · · , zk] is the collection of
the raw data till time k, since the conditional expectation is
the best predictor in the sense of minimizing the mean square
error [27]. With the help of the joint normal distribution, we
can firstly obtain the optimal state estimation x̂k = E[xk|Zk]
following the standard KF equations [17]:

x̂−k = Akx̂k−1 (4)

P−k = AkPk−1A
T
k +Qk (5)

Kk = P−k H
T
k (HkP

−
k H

T
k +Rk)

−1
(6)

x̂k = x̂−k +Kk(zk −Hkx̂
−
k ) (7)

Pk = (I −KkHk)P−k (8)

Then, the optimal output estimate is ẑk = Hkx̂k. However,
when the compression strategy and the packet loss are con-
sidered, transmitting the raw data may be neither the only
nor the best option to precisely reconstruct the system output.
To offset the effect of the missing data on the reconstruction
quality, the node can preprocess the raw data with a local
KF firstly and transmit more accurate data at the expense of
the computation cost. In general, there are many transmission
options after using KF. Here, we consider two extreme cases,
transmitting either ẑk or x̂k. The former has the same size as
the raw data and is the closest to the real system output and
the latter has different size but is the optimal representation
of the system state. Then, the sensor node can transmit one
of the following three contents: zk, ẑk and x̂k. Assuming
the node transmits the raw data, each sample zk has the
probability p to be transmitted and the packet will arrive at the
server through the channel with the probability λ according to
our compression strategy and channel loss model, as shown
in Fig. 1a. Then the received data at time k in the server,
denoted as yk, is either zk or nothing. Thus, the received data
sequence till time k in the serve, Yk = [y1, y2, · · · , yk], is
a subset of Zk = [z1, z2, · · · , zk]. Similarly, when the node
transmits ẑk or x̂k, Yk is a subset of Ẑk = [ẑ1, ẑ2, · · · , ẑk]
or X̂k = [x̂1, x̂2, · · · , x̂k]; the corresponding diagrams are
depicted in Figs. 1b and 1c, respectively.

Our goal is to firstly obtain the solutions for the three
MMSE estimate problems assuming the above mentioned
linear dynamic system Eqs. (1) and (2) and the success packet
reception process Υk:

arg min
z̄k

E
[∥∥z̄k(Y k

)
−Hkxk

∥∥2

2

]
subject to Yk ⊂


Zk, if zk is transmitted
Ẑk, if ẑk is transmitted
X̂k, if x̂k is transmitted

where z̄k
(
Y k

)
is the estimator of Hkxk, which is a function

of the received data Yk.
Using the properties of conditional expectation [27],

E[Hkxk|Yk] is closest to Hkxk of all functions of Yk in
the sense of MMSE. Thus, the problem is actually to find
z̄k = HkE[xk|Yk] for each transmission option. After that,
we further compare the performance of the obtained solutions
through the analysis of reconstruction quality and energy cost
in the following sections.

III. MMSE RECONSTRUCTION SOLUTIONS AND
ANALYSIS OF RECONSTRUCTION QUALITY

This section presents the MMSE reconstruction solutions in
the server, KF-raw, KF-output and KF-state, when the node
randomly transmits the raw data, the estimate of the system
output and the state estimate over the above mentioned packet
loss channel. After that, it further formulates the reconstruction
quality of each method as a function of system parameters, as
well as transmission and reception probabilities.

A. Minimum State Estimate Covariance Filter

In [18] the authors have derived the minimum state esti-
mate covariance filter given the observations and their arrival
sequence, i.e. x̄k = E[xk|Zk,γk], where γk = [γ1, · · · , γk]
satisfies a Bernoulli process. The fundamental theorem behind
the core idea is that the conditional distribution of the bivariate
normal is still normal [21]. More specifically, if

[
x1, x2

]T
satisfies a joint normal distribution with mean

[
µ1, µ2

]T
and covariance

[
Σ11, Σ12

Σ21, Σ22

]
, then the distribution of x1

conditional on x2 = a is still normal and satisfies (x1|x2 =
a) ∼ N (ū, Σ̄), where the conditional mean and covariance
can be calculated by:

µ̄ = µ1 + Σ11Σ22
−1(a− µ2) (9)

Σ̄ = Σ11 + Σ12Σ22
−1Σ21 (10)

Similar to the standard KF, the random variable zk and xk
conditional on the received data Zk−1 and on the arrivals
γk−1 have jointly normal distribution. The only difference
is that the covariance of zk|(Zk−1,γk−1) changes from
HkP

−
k H

T
k +Rk to sk, where

sk = HkP
−
k H

T
k + γkRk + (I − γk)σ2I (11)

and σ2 is the covariance of the measurement noise when there
is no update. Using Eqs. (9) and (10) and taking the limit σ2 →
∞, we can obtain the minimum state estimate covariance filter,
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sensor channel serversystem

(a)

sensor channel serversystem KF

(b)

sensor channel serversystem KF

(c)

Fig. 1: Three reconstruction problems in the server, when the sensor node randomly transmits (a) the raw data; (b) the local
estimate of the system output; (c) the local state estimate, with the transmission probability p over a packet drop channel,
where the success arriving probability of the packet is λ.

Eqs. (12) to (16), but removing τk in Eqs. (15) and (16).
Compared with the standard KF Eqs. (4) to (8), the new filter
only performs the time update (a priori estimation) if the
measurement is not received. It minimizes the state estimate
covariance given the measurements Zk and the arrivals γk.

B. MMSE Reconstruction Solutions

We firstly provide the optimal reconstruction, named KF-
raw, when Yk ⊂ Zk. The method from [18] can be used.
Compared with [18], the only difference is that we have
an additional variable τk to reduce the transmission rate.
However, since τk has a Bernoulli distribution, it only changes
Eq. (11) to sk = HkP

−
k H

T
k +τkγkRk+(I−τkγk)σ2I . Thus,

the modified KF that minimizes the state estimate covariance
given a realization of Yk is:

x̄−k = Akx̄k−1 (12)

P̄−k = AkP̄k−1A
T
k +Qk (13)

K̄k = P̄−k H
T
k (HkP̄

−
k H

T
k +Rk)

−1
(14)

x̄k = x̄−k + τkγkK̄k(yk −Hkx̄
−
k ) (15)

P̄k = P̄−k − τkγkK̄kHkP̄
−
k (16)

The corresponding MMSE estimation of the system output is
z̄k = E[zk|Yk = Y0] = Hkx̄k where Y0 is a realization of
received data sequence.

Next, we aim to find the MMSE estimation, KF-output,
when Yk ⊂ Ẑk. Combining Eqs. (1), (2), (4) and (7) , the
local state estimate at time k can be described as:

x̂k = KkHkAkxk−1 + (I −KkHk)Akx̂k−1

+KkHkwk +Kkvk (17)

It has colored noise w.r.t. the real system state:

εk = (I −KkHk)Akεk−1

+ (KkHk − I)wk +Kkvk (18)

In order to obtain the optimal reconstruction when the re-
ception is ẑk = Hkx̂k, the original system state needs to be
firstly augmented [28] to include the local state estimation x̂k,
namely Xk =

[
xk, x̂k

]T
. Then the expanded system model

and the new observation model become:

Xk = FkXk−1 +Wk (19)
ẑk = CkXk (20)

where Fk =

[
Ak 0

KkHkAk (I −KkHk)Ak

]
, Wk =[

wk
KkHkwk +Kkvk

]
, Ck =

[
0 Hk

]
, with the covariance

of the system noise Q̄k =

[
Qk QkH

T
k K

T
k

KkHkQk KkRkK
T
k

]
and the

covariance of the observation noise R̄k = 0. The optimal re-
construction of the system state can thereby be obtained using
Eqs. (12) to (16) by changing the system parameters. Note
that, this produces actually the estimation of the expanded
state, X̄k, whose first element is the final estimation of the
real system state. Then the MMSE estimate of the system
output using KF-output is:

z̄k = E[zk|Ẑk,Υk = Υ0] =
[
Hk 0

]
X̄k (21)

When the node randomly transmits the local state estimation
over the packet dropping channel, namely Yk ⊂ X̂k, the
MMSE estimate of the system state at time k is:

x̄k = E[xk|Yk ⊂ X̂k] =

{
x̂k, if τkγk = 1

Akx̄k−1, otherwise
(22)

This means that the server only needs to perform a linear
predictor:

x̄k = Akx̄k−1 (23)

and replaces the prediction x̄k by x̂k, if the packet is received.
The reconstructed system output is then z̄k = E[zk|Yk ⊂
X̂k] = Hkx̄k. This method is called KF-state.
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In summary, when the node randomly transmits the raw
data (with the transmission probability p of each sample)
over the packet loss channel (with the successful reception
probability λ) as depicted in Fig. 1a, the MMSE estimation
of the system state x̄k, can be obtained using KF-raw with
Eqs. (12) to (16); when the local estimated system output is
transmitted as shown in Fig. 1b, KF-output uses the modified
KF with the expanded system parameters in Eqs. (19) and (20)
produces the optimal estimation of the augmented state, whose
first element corresponds to the MMSE estimation of the
original system state, x̄k; when the local estimated state is
transmitted as indicated in Fig. 1c, the MMSE estimation x̄k
is produced by KF-state using the linear predictor Eq. (23)
with the replacement when the data packet is received. The
corresponding MMSE estimation of the system output using
these three methods can be obtained by z̄k = Hkx̄k.

C. Analyses of Reconstruction Quality

The reconstruction error, εk = Hkxk − z̄k, at each time
k is a random variable and we use its covariance, σ̄, to
measure the reconstruction quality of each method. It depends
on the system parameters, Ak, Hk, Rk, Qk, as well as
the transmission and reception probabilities p and λ. This
section aims to formulate their relations considering a time
invariant system. The analysis consists of three steps. Firstly,
we partition the errors coming from different time instant k
into different groups with the help of Markov chain and the
calculation of σ̄ is converted to obtain the error covariance
and probability at each Markov state using the law of total
probability. Secondly, the problem is further simplified to
calculate the error covariance of the state estimate at state 0
using the relation between the covariance at state i, and state at
i− 1. For KF-state, the solution is straightforward, while for
KF-raw and KF-output, the third step is required. An explicit
equation between the covariance at state 0 and the covariance
at other states is formulated and an approximation is further
provided.

We firstly group the errors into different Markov states and
formulate σ̄ following the ideas presented in [22], [23]. Note
that even the fundamental theory is similar, here we solve a
different problem. The reconstruction of the server at each
time instant k, z̄k, is a random variable. It could be either
the a priori prediction or the a posteriori estimate depending
on τkγk. Let βk be the binary random variable for each k: if
the outcome is the a priori prediction, βk = 1 corresponds to
a success; otherwise, βk = 0 corresponds to a failure. Then
the probability of a failure is pλ at each time instant k, since
each packet has pλ probability to be received. The value of βk
does not affect the likelihood of getting βk+1 = 1 or βk+1 = 0
at time k+ 1. In other words, each binary random variable is
identical and independent. It is associated with a Bernoulli trial
and the sequence of the independent binary random variables
{β1, β2, β3, · · · } is a Bernoulli process. Let θk denote the
number of most recent consecutive successes that have been
observed at the kth trial. If the kth trial is a failure, then
θk = 0; if trial numbers k, k−1, · · · , k−m+1 are all successes
but trial number k−m is a failure, then θk = m. For example,

considering we obtain {β1, β2, β3, β4, · · · } = {0, 1, 1, 0, · · · }
in an experiment, then θ1 = θ4 = 0, θ2 = 1 and θ3 = 2. The
collection of {θ1, θ2, θ3, · · · } is thereby a stochastic process.
Assuming θk = i at the kth trial, then θk+1 will equal either
i+1 or 0 at the next trial regardless of the values θ1, · · · , θk−1.
It means the random process satisfies the Markov property and
can be modeled as a discrete-time Markov chain as shown in
Fig. 2. The state space of the Markov chain is N, which is the
set of all possible values of θk.

According to the law of total probability, σ̄ = cov(εk), is the
summation of the product of the probability that εk locates at
each state, pi = p(εk|θk = i), and the covariance of the errors
at each state, σi = cov(εk|θk = i), namely:

σ̄ = cov(εk) =

∞∑
i=0

p(εk|θk = i)cov(εk|θk = i)

=

∞∑
i=0

piσi =

∞∑
i=0

piHΣiH
T (24)

where Σi = cov(xk − x̄k) is the error covariance of the state
estimate produced at state i and σi = HΣiH

T . The goal of
obtaining σ̄ gets reduced to calculate pi and Σi. Note that, σ̄
and Σi can also be represented by P̄k in the modified KF in
Eq. (16). Since P̄k = E[(xk − x̂k)(xk − x̂k)T |Υk = Υ0] is a
function of the received data sequence, it is a random variable.
Then σ̄ = cov(εk) = E[(Hxk − z̄k)(Hxk − z̄k)T |Υk] =
HE[P̄k]HT and Σi = E[P̄k|θk = i].

For calculating pi, the transition matrix of the Markov chain
is needed. The transition probability of going from state i at
time k to the next state i + 1 at time k + 1 is Pr(θk+1 =
i+ 1|θk = i) = 1− pλ. It is actually independent of the time
instant, namely, the transition probability from state i at any
time instant j to state i + 1 is 1 − pλ. Thus, we can discard
the time instant to obtain the transition probability from state
i to state i+ 1:

pi,i+1 = Pr(θk+1 = i+ 1|θk = i)

= Pr(θj+1 = i+ 1|θj = i)

= 1− pλ (25)

The transition probability from state i to state 0 has the
probability pi,0 = pλ as shown in Figure 2. Thus, the transition

0 1 2 . . .
1- 1- 1-

Fig. 2: State graph of the success-runs chain when the sensor
node randomly transmits data over the packet drop channel.

matrix of the chain is:

P =


pλ 1− pλ · · · 0 0 · · ·
...

...
. . .

...
...

. . .
pλ 0 · · · 1− pλ 0 · · ·
...

...
. . .

...
...

. . .





6

It is a time-homogeneous Markov chain. The distribution
over the states can be written as a stochastic row vector
π =

[
p0, p1, p2 · · ·

]
with non-negative entries that add up

to one. The probability of the random variable θk at the state
i is Pr(θk = i) = π(i) = pi. According to the steady state
equation, πP = π, we can obtain the distribution over the
state i:

pi = pi−1(1− pλ) = pλ(1− pλ)i (26)

The probability at state 0, p0 = pλ, is the reception rate of
the receiver.

Now we calculate Σi. Assuming θk−1 = i− 1 and θk = i,
i ∈ N+, the error covariance of the state estimate at time k
is evolved from the error covariance at time k − 1 satisfying
Eq. (13). Thus, Σi can be calculated from Σi−1 using:

Σi = AΣi−1A
T +Q = gi(Σ0) (27)

where gi(Σ0) = AiΣ0A
iT +

i−1∑
j=0

AjQAj
T

. Thus, to obtain

the final reconstruction error covariance σ̄, only the error
covariance of the state estimate produced at state 0, Σ0, is
needed.

For KF-state, Σ0 is straightforward. It equals the converged
covariance matrix of the local KF, i.e., Σ0 = lim

k→∞
Pk = P .

Since once the update x̂k is received, the prediction at time k
is replaced and the estimate covariance P̄k is calibrated to P ,
no matter which state is the prediction from. More specifically,

P̄k =

{
P, if τkγk = 1

AP̄k−1A
T +Q, otherwise

(28)

Thus, we can easily calculate the exact σ̄ using (26) and (27)
for KF-state. While, for KF-raw and KF-output, the state
estimation error can not be calibrated when there is an update.
In the following, we aim to find the equation between Σ0 and
Σi (i = 1, 2, · · · ) at other states. Once the equation is solved,
the only unknown Σ0 can be obtained.

We start at KF-raw and the same method is suitable for
KF-output as presented later. The error at state 0 may come
from any state i (i ∈ N), whenever there is an update (i.e., a
successful reception) as shown in Fig. 2. Let Σi0 denote the
covariance of the errors coming from state i to state 0. It is
derived from the a priori prediction covariance Σ−i0 at state i
following Eq. (13), with an update phase following Eqs. (14)
and (16):

Σ−i0 = AΣiA
T +Q = gi+1(Σ0) (29)

K = Σ−i0H
T (HΣ−i0H

T +R)−1 (30)

Σi0 = (I −KH)Σ−i0 (31)

Then the covariance at state 0, Σ0, is the summation of the
product of the probability at each state and the covariance of
the errors coming from each state to state 0, namely

Σ0 =

∞∑
i=0

pi Σi0 (32)

Combining Eqs. (27) to (31), we obtain:

Σ0 =

∞∑
i=0

pi

[
gi+1(Σ0) (33)

− gi+1(Σ0)HT
(
Hgi+1(Σ0)HT +R

)−1
Hgi+1(Σ0)

]
Although there is only one unknown Σ0 in this equation, it

is nontrivial to solve it. We validate this equation empirically
in the next section and propose an approximate solution here.
The idea is to separate the summation in Eq. (33) into a set of
independent equations and solve each equation to obtain the
approximate result of Σ−i0, thereby calculating the approximate
Σi0, Σ0 and σ̄ using the former presented equations. The
following assumption is made for the approximation: as long
as the error at state 0 comes from state i, Σi0 is fixed and
equals the converged covariance when the node transmits every
i + 1 samples. In other words, the assumption overlooks the
effects of the errors from other states (∀j 6= i) on the changes
of Σ0. It is equivalent to split the state graph with infinite states
in Fig. 2 into a set of cyclic graphs as shown in Fig. 3. More
specifically, it corresponds to multiply a pi in the left side of
Eq. (33) for each state i and the summation is separated into
a set of independent equations:

pi Σ0 = pi

[
gi+1(Σ0) (34)

− gi+1(Σ0)HT (Hgi+1(Σ0)HT +R)−1Hgi+1(Σ0)
]

where i = 0, 1, 2, · · · . Each of them is an algebraic Riccati
equation (ARE), after replacing the unknown Σ0 by Σ−i0 =
gi+1(Σ0) with the help of Eqs. (27) and (29), namely:

Σ−i0 = Ai+1Σ−i0A
i+1T

(35)

−Ai+1Σ−i0H
T (HΣ−i0H

T +R)−1HΣ−i0A
i+1T

+

i∑
j=0

AjQAj
T

It provides an approximation of the real Σ−i0 and can be solved
using the generalized eigenproblem algorthms [29]. Plugging
this result into Eqs. (30) and (31), we can obtain the approxi-
mate Σi0. Then the approximate Σ0 can be further calculated
using Eq. (32). Combining with Eqs. (26), (27) and (24), the
approximate estimate covariance σ̄ can be derived.

The analysis of the reconstruction quality using KF-output
follows the same procedure as KF-raw. The difference is
that we have to firstly obtain the estimate covariance of the
augmented state, Σ̄, by substituting all the expanded system
parameters into Eqs. (24) to (35). Then σ̄ can be further
calculated by:

σ̄ =
[
H 0

]
Σ̄
[
H 0

]T
(36)

In summary, the reconstruction quality of the system state
is represented by the estimate covariance σ̄. For KF-raw, it
can be derived using Eqs. (24) to (33) for the exact solution,
which is nontrivial to calculate. An approximate solution is
provided by solving a set of AREs in Eq. (35) firstly and then
combining with Eqs. (30) to (32) and Eqs. (26), (27) and (24).
For KF-output, the estimate covariance of the augmented state
can be obtained using the same method. We have to further
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Fig. 3: A set of cyclic state graphs of the success-runs chain for calculating the approximate estimate covariance.

extract σ̄ with the help of Eq. (36). For KF-state, the exact
σ̄ can be easily calculated using Eqs. (26), (27) and (24) with
Σ0 = P .

IV. SIMULATION AND EXPERIMENTAL RESULTS

This section provides the simulation and experimental re-
sults. It validates the analyses of the reconstruction quality in
Section III-C and further provides the energy cost including the
computation and communication measured from the physical
implementation. Moreover, they are compared with CS [15]
in terms of the reconstruction quality of the system output
signal. In the simulation section, an artificial system is firstly
created with an exact state space representation and its output
is sparse in the frequency domain to avoid the validation and
comparison biases caused by the uncertainty of the system
model. In the experimental section, the physical implementa-
tion is conducted with the motes to collect real sensor signals
for further validation and comparison in reality. Moreover,
the energy cost including computation and communication
are measured. The trade-off between the energy cost and
the reconstruction quality is further provided under a typical
scenario.

A. Analyses Validation and Reconstruction Comparison Using
An Artificial System

This section validates the analyses in Section III-C and
compares the reconstruction quality of each method using the
simulated system. Besides, it provides a comparison of KF-
based methods and CS under the random sampling scheme.
For the sake of fairness, the created system has the state space
representation and its output is sparse in the frequency domain.
One example of the randomly created system in Matlab with
214 samples has the system parameters listed in Table I. It
is generated based on the state space representation of the
quadrature sinusoid signals with the frequency f = 200 Hz
and the sampling frequency Fs = 1 kHz, but with the changed

transition matrix1 A =

[
cos(2πf/Fs) sin(2πf/Fs)
− sin(2πf/Fs) 0.9 cos(2πf/Fs)

]
to make the system stable (eigenvalues of the A matrix within
the unit circle). The pseudo noise wk drawn from the standard
normal distribution with the covariance Q is added to the state.
Fig. 4a depicts the measured signal of the system in the time
domain, which has the measurement noise vk ∼ N (0, R). It
is approximately sparse in the frequency domain due to the
added noise as shown in Fig. 4b using Fourier transformation.
The transmission rate p is adjusted from 0.1 to 1 and the
successful reception probability is set to λ = 0.9. Under
each transmission probability, 100 experiments are conducted.
We firstly validate the analysis for each method using this

1This will only change the phase of the sinusoid but not the frequency.
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Fig. 4: (a) The noisy measurements of the generated system
in time domain; (b) Single-sided amplitude spectrum of the
noisy measurements in frequency domain using the Fourier
transformation.

system. As mentioned in Section III-C, there exists actually
two alternatives to calculate the reconstruction covariance
empirically: the first one is to directly calculate the covariance
of the reconstruction error compared with the real system
output; the second one is through the use of P̄k matrix. We
firstly compare them as shown in Figs. 5a to 5c and they
perfectly match with each other when the system satisfies the
given state space model. This can be treated as a metric to
measure if the system model is accurate or not. Later on, we
use the direct calculation as the empirically results. Regarding
the exact analysis, when the node randomly transmits the raw
data and the estimated output, Eq. (33) is nontrivial to calculate
as mentioned in Section III-C. Here we plug the obtained Σ0

from all experiments to prove its correctness.
Figs. 6a to 6c depict the trade-offs between transmission

rate and reconstruction quality of these three methods. The
empirical results precisely match the analysis using Eqs. (26)
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TABLE I: The system parameters of an artificial system with sparse represented output.

A H R Q
[0.3090, 0.9511; -0.9511, 0.2781] [0.2660, 0.3695] 0.9345 [0.5284, 9e-4; 9e-4, 0.0296]

to (33). The approximated results of Σ0 in KF-raw and KF-
output using Eq. (34), overestimate the error at each state,
which degrades the estimation of the covariance. For example,
when the transmission probability is p = 0.5, we obtain 15
states (from state 0 to state 14) in Fig. 2 due to the limited
length of the experiment. The distribution of the probability
at each state is listed in Table II. As the sequence number of
the state increases, the probability at each state decreases. It
confirms the analysis calculated from Eq. (26). The reconstruc-
tion error covariance at each state σi from the experiment and
the analysis, are reported in Figs. 7a to 7c, for KF-raw, KF-
output and KF-state, respectively. The difference among them
becomes larger, when the sequence number of the Markov
state gets bigger. This is because that the empirical calculation
is inaccurate, due to too few samples at the bigger number
states (see Table II). For example, there is only one sample at
state 14, which results in a 0 convariance at this state using
the unbiased estimator of the population covariance. However,
it does not drastically affect the results of the final covariance
σ̄, since the probabilities at these states are relative small.
For example, σ̄ of KF-output is 0.3632 obtained empirically
and 0.3649 analytically. There are discrepancies between the
approximated results and the exact analyses of KF-raw and
KF-output. This is caused by the approximation of Σ−i0. The
approximated Σ−i0 obtained from Eq. (35) actually corresponds
to the converged covariance under any given initial value,
rather than the covariance of the (i+ 1) step ahead prediction
error evolved from Σ0, i.e., gi+1(Σ0).

Next, we compare these three methods with CS [15]. For
initiating CS [15], the discrete Fourier transform (DFT) matrix
is exploited as the representation basis, Ψ, since the output
signal is actually the linear combination of sin(2πf/Fs) and
cos(2πf/Fs) added with Gaussian noise. The sensing matrix
Φ ∈ RpλL×L selects the time points of Zk that has been
successfully received. It can be constructed using an L × L
identity matrix, where each row k has pλ probability to be se-
lected depending on whether the value of τkγk = 1. Due to the
approximate sparse representation and the measurement noise,
the reconstruction problem can be formulated as a basis pursuit
denoising (BPDN) problem to find the sparse representation of
HXk from Yk, denoted as Żk, with smallest `1-norm, subject
to the approximately known loss ‖φψŻk − Yk‖2 ≤ δ:

arg min
Żk

||Żk||1

subject to ||φψŻk − Yk||2 ≤ δ (37)

where δ =
√
pλLR due to the measurement noise has zero

mean and variance R. We use [31] to solve this problem.
After obtaining Żk, the reconstructed signal is ψŻk with the
reconstruction covariance cov(ψŻk −HXk).

The trade-off between the covariance of the reconstructed
signal σ̄ and the transmission rate p is depicted in Fig. 8. We
firstly compare the three KF-methods. Under a given trans-

mission rate, KF-output achieves better reconstruction than
KF-raw. Since when the local estimated output ẑk is received,
the reconstruction error of the output signal is calibrated, i.e.,
the reconstruction covariance produced at the Markov state 0,
σ0, is reset to the minimum value HPHT . However, since
the complete state information can not be obtained, the recon-
struction error of the state still accumulates. When the local
state estimation is received, the reconstruction error at state 0
can be reset to the minimum P . Therefore, KF-state achieves
the best reconstruction with the lowest covariance σ̄ under the
same transmission rate. The gain of KF-state increases as the
transmission rate decreases, since the local state information
plays a more important role in calibrating the cumulative error.
For example, when p = 0.5 and λ = 0.9, σ̄ is 0.3345 produced
by KF-state, which reduces the error covariance generated by
KF-output and KF-raw by 8.56% and 26.48%, respectively;
when p decreases to 0.1 and λ = 0.9, the corresponding gains
become to 27.37% and 43.24%, respectively. Note that, if
the sensor node continuously transmits and all of them are
successfully received (p = 1 and λ = 1), there will be no
missed information and thus no difference among theses three
methods in terms of the reconstruction quality. Compared with
CS [15], all of them produce better reconstructed signal. For
example, when the node randomly transmits the raw data over
the unreliable channel with the transmission rate p = 0.5 and
λ = 0.9, the variance of the reconstruction σ̄ using KF-raw
is only 0.4550; while using CS, it is 0.5036, which is 10.69%
larger.

B. Physical Implementation

This section implements the three methods in the motes
using sensed temperature signal as an example. Besides the
confirmation of the results obtained from the simulation, it
further provides the energy cost of each method and compares
them in terms of the trade-off between energy cost and
reconstruction quality.

The experiment setup, similar to the one used in [23], is
depicted in Fig. 9. It uses a server (PC) for data reconstruction
and two OpenMotes [32] for sending and receiving. The
OpenMote is based on the Ti CC2538 System on Chip (SoC)
[33], which combines a 32-bit ARM Cortex-M3 with an IEEE
802.15.4 compliant RF transceiver in one chip. The sender is
powered by the DC power supply with 3.0 V. The step-down
DC-DC converter TPS62730 in the mote regulates the input
voltage down to 2.1 V in the regulated mode. The receiver is
connected to the server, where the data monitoring application
is used to receive, display and store data. The nodes run
ContikiOS, which is an open source, highly portable, multi-
tasking operating system for memory-efficient networked em-
bedded systems and wireless sensor networks [34]. The RIME
communication stack is used, which provides a set of custom
lightweight communication primitives designed for low-power
wireless networks [35]. To attain low-power operation of the
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Fig. 5: System model accuracy estimation through the comparison between the directly calculated covariance of the
reconstruction errors w.r.t. the real system output and the way through the use of P̄k using the artificial system for (a)
KF-raw; (b) KF-output; (c) KF-state.
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Fig. 6: The comparison of the trade-off between transmission rate and reconstruction quality obtained empirically and
analytically using the artificial system, where ‘empirical’ corresponds to the direct calculation of the reconstruction error
covariance; ‘exact ana.’ corresponds to Eqs. (24) to (33) and Eq. (36); ‘approx. ana.’ corresponds to Eq. (35), Eqs. (30) to
(32), Eqs. (26), (27) and (24), and Eq. (36) for (a) KF-raw; (b) KF-output; (c) KF-state.

TABLE II: Comparison of the probability distribution at each Markov state using the artificial system between the empirical
results and the analysis obtained from Eq. (26).

state 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
pi exp. 0.4505 0.2478 0.1347 0.0738 0.0406 0.0225 0.0133 7.4e-3 4.5e-3 2.2e-3 1.6e-3 5e-4 3e-4 2e-4 1e-4
pi ana. 0.4500 0.2475 0.1361 0.0749 0.0412 0.0226 0.0125 6.9e-3 3.8e-3 2.1e-3 1.1e-3 6e-4 3e-4 2e-4 1e-4

radio, ContikiMAC [36] is used. The node is required to keep
the radio off as much as possible and periodically wake up to
check for radio activity. The channel check rate (CCR) is given
in Hz, specifying the number of channel checking per second.
It is given in powers of two with 7 options, ranging from 2
to 128 Hz, and the default value is 8 Hz. The unicast scheme
is exploited between two nodes: if a packet transmission is
detected, the receiver stays awake to receive the next packet
and sends an acknowledgment (ACK); to send a packet, the
sender repeatedly transmits the same packet until an ACK is
received.

1) Analyses Validation and Reconstruction Comparison Us-
ing Experimental Collected Signals: We validate the analyses
and compare these three methods with CS [15] using exper-
imental collected signal in this section. The sender collects
the temperature using SHT21 sensor every minute. The server
reconstructs the system state and the system output based on

the received information. The collected data in the Lab with
L = 1638 samples is shown in Fig. 10a. We assume the
temperature changes with a velocity and use Matlab system
identification toolbox [37] to find a second order state space
model. The obtained system parameters are listed in Table III.
For CS [15], the representation basis Ψ is different from
the simulation section. The discrete cosine transform (DCT)
matrix is used here, which produces better results than FFT.
The signal is sparse after DCT as depicted in Fig. 10b,
where 99% of the energy can be represented by the largest
DCT coefficient. For confirmation of the former analyses, we
manipulate the transmission rate from 0.1 to 1 and keep the
successful reception probability as λ = 0.9 using the collected
signal. Under each transmission probability, 100 experiments
are conducted.

We firstly analyze if the system can be accurately charac-
terized by the obtained system model following the metric
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Fig. 7: The comparison of reconstruction error covariance at each Markov state, σi, obtained empirically and analytically using
the artificial system, where ‘empirical’ corresponds to the direct calculation of the reconstruction error covariance; ‘exact ana.’
corresponds to Eqs. (24), (27) to (33); ‘approx. ana.’ corresponds to Eqs. (27), (30) to (32) and (35), and Eqs. (36) and (24)
for (a) KF-raw; (b) KF-output; (c) KF-state.

TABLE III: The system parameters of the collected data using Openmotes.

A H R Q
[0.7921, 0.8151; -0.0436, 1.1708] [1 0] 0.4545 [0.1868, 0.0484; 0.0484, 0.0127]
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three KF methods and CS [15] using the artificial system.

Fig. 9: Experiment setup for analyses validation and energy
cost measurement using Openmotes.
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Fig. 10: (a) The collected temperature data with Openmote in
the time domain; (b) The sorted amplitude spectrum of the
signal using DCT in the ascending order.



11

described in Section IV-A. The real system output Hxk is
unknown in this situation. However, to calculate the covari-
ance of the reconstruction error w.r.t. Hxk, we can firstly
calculate the covariance of the reconstruction error w.r.t. the
KF estimated output ẑk then add the local KF estimate
covariance, since cov(z̄k −Hxk) = cov(z̄k − ẑk) + cov(ẑk −
Hxk) = cov(z̄k − ẑk) + HPHT . Figs. 11a to 11c depict
the covariance of reconstruction error w.r.t. the KF estimated
output calculated using cov(z̄k − ẑk) and P̄k matrix. The
two empirically obtained results are quite close for all three
KF methods. Thus, the obtained model fits the data set. We
add cov(z̄k − ẑk) by HPHT to obtain the reconstruction
covariance w.r.t. the real system output and to represent the
empirical results later on. Similarly, the objective of CS in
Eq. (37) becomes to find the sparse representation of KF
estimated output, i.e., Żk = ψ−1Ẑk. The a priori information
is δ =

√
pλL(R−HPHT ) according the former analysis.

After obtaining Żk using [31], the reconstruction covariance
of CS is cov(ψŻk − Ẑk) +HPHT .

The comparisons of the empirical results and the analyses
for these three methods using the collected signal are presented
in Figs. 12a to 12c, respectively. Although there are slightly
discrepancies between the analyses and the empirical results
for each method, the errors are acceptable. They are mainly
due to the inaccuracy of the system model. There are no
significant differences of the reconstruction quality among
these three methods for this system as shown in Fig. 13: KF-
raw is slightly worse than KF-output and KF-state, and the
later two methods have very similar performance depending
on the system parameters. While compared with CS [15],
the superiority of KF-based methods are very obvious as
reported in Fig. 13. The lower the transmission rate is, the
higher improvements of the reconstruction quality the KF-
based schemes achieve. For example, when the transmission
rate equals 0.5, KF-raw reduces the reconstruction covariance
of CS [15] by 56.03 %; the improvement increases to 77.9%,
as the transmission rate decreases to 0.1.

2) Comparison of Energy Cost: This section measures the
energy cost of the sensor node using these three KF methods
and further compares the performance of each method in
terms of the trade-off between energy cost and reconstruction
quality. We firstly compare the computation cost of them. The
difference among them in the sender is whether a local KF is
used. In this experiment, we have implemented a 2-order KF
in the sender and visualize the current profile on the Tektronix
MSO5204B oscilloscope by measuring the voltage drop over
a 10 Ω resistor, which is connected in series with the sender.
The current profile is shown in Fig. 14. Because the execution
time of a KF is very small, it is repeated 100 times in the node.
It costs 26.2 ms in total, which corresponds to 0.262 ms for
each execution of a KF. The voltage drop is 110.12 mV and
corresponds to 11.012 mA of the current in the 10 Ω resistor.
Thus the per-time current consumption by executing a KF is
Ccomp = 2.88mAms. The corresponding energy consumption
of the KF is the product of the electric charge and the regulated
voltage, i.e., Ecomp = 2.1Ccomp = 6.05µJ .

Now we measure the communication cost using these three
methods. Figure 15 depicts the current profile of the sender

during a communication transaction, when the CCR of the
receiver is 32 Hz. When there is a packet to be transmitted,
the radio is woken up to firstly detect, if there is any data
coming from other nodes to be received. Two successive clear
channel assessments (CCA) are performed for this purpose
with the interval Tc between them. Then a collision avoidance
mechanism is conducted before data transmission, where sev-
eral successive CCAs are performed to check the availability
of the channel. After that, the sender starts to transmit the
collected data consisting of 6 preamble and header bytes and
the payload. Note that the maximum payload length is 127
bytes according to the format of IEEE 802.15.4 standard and
the minimum is 43 bytes (19 bytes MAC header and 24
bytes frame payload) according to ContikiMAC. When the
payload is fewer than 43 bytes, the rest will be filled with
default values. Then the RF is switched from transmission to
receive the ACK. Because the absence of ACK, the radio is
switched to transmission again to retransmit the data packet
until it receives the ACK. Ti interval is required between
two consecutive transmissions. The number of retransmissions
increases as the CCR of the receiver decreases, since it
can not promptly detect the communication and respond the
transmitter. For example, there are only 2 retransmissions in
average, when the CCR of the master node is 128 Hz; the
number increases to 9 and 32, when CCR decreases to 32 Hz
and 8 Hz, respectively.

Since the number of total transmitted packages during one
transaction is related to the CCR of the receiving node, here we
firstly measure the unit transmission cost Etx unit of the three
KF methods, denoted as Unit TX in Fig. 15, which corresponds
to the energy consumption of transmitting a single package
without any retransmission. The maximum data length left for
the user is NBmax = 108 bytes and when the data length is
smaller than 24 bytes, NBmin = 24 bytes will be transmitted.
Theoretically, Etx unit can be calculated by

Etx unit = etx min(NBmin, NB), NB <= NBmax (38)

where etx is the energy cost of transmitting 1 bit depending on
the hardware. Fig. 16a depicts our measurement of Etx unit

for different sizes of the raw data, ranging from 1 to 54
bytes. There are slightly differences w.r.t. the theoretical results
caused by the manual error. The data size when transmitting
the estimated system output signal is the same as the raw data,
while the size is doubled when transmitting the state estimate
for a 2nd-order system. Thus, the unit transmission cost of
KF-raw and KF-output are the same for any given size of the
raw data. Compared with transmitting the system state, they
require fewer energy when the raw data size is bigger than 12
bytes; otherwise, all of them are the same.

Taking the 32 Hz CCR of the receiver for example, we
compare the trade-offs between energy cost and reconstruction
quality of the three methods using the collected signal. The
energy cost is measured by adding the computation cost and
the communication cost per transmission. Let Ecmn denote
the average cost per communication. It can be calculated by

Ecmn = Eo + pEtx unitNtx + Erx (39)
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Fig. 11: System model accuracy estimation through the comparison between the directly calculated covariance of the
reconstruction errors w.r.t. the KF estimate and the way through the use of P̄k using the collected signal for (a) KF-raw;
(b) KF-output; (c) KF-state.

0 1 2
0

0.2

0.4

0.6

0.8

1

σ̄ (oC2)

tr
an

sm
is

si
on

ra
te

empirical
exact ana.
approx. ana.

(a)

0 1 2
0

0.2

0.4

0.6

0.8

1

σ̄ (oC2)

tr
an

sm
is

si
on

ra
te

empirical
exact ana.
approx. ana.

(b)

0 1 2
0

0.2

0.4

0.6

0.8

1

σ̄ (oC2)
tr

an
sm

is
si

on
ra

te

empirical
exact ana.

(c)

Fig. 12: The comparison of the trade-off between transmission rate and reconstruction quality obtained empirically and
analytically using the collected signal, where ‘empirical’ corresponds to the direct calculation of the reconstruction error
covariance; ‘exact ana.’ corresponds to Eqs. (24) to (33) and Eq. (36); ‘approx. ana.’ corresponds to Eq. (35), Eqs. (30) to
(32), Eqs. (26), (27) and (24), and Eq. (36) for (a) KF-raw; (b) KF-output; (c) KF-state.
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Fig. 13: Comparison of three KF methods with CS [15] in
terms of reconstructing the system output signal using the
experimental collected signal.

where Eo is the average overhead cost spent on CCRs before
transmission, depending on the hardware and the MAC layer;
Ntx is the average number of transmission times, mainly

depending on the MAC protocol; Erx is the energy cost spent
on receiving the ACK, mainly depending on the hardware.
In this case, Eo is around 224.36 µJ , Ntx is 9 and Erx is
14.78 µJ. When the transmitted data length is fewer than 12
bytes, the trade-off between energy cost and reconstruction
quality is shown in Fig. 16b. The trend is nearly the same as
Fig. 13, since all of them spend the same energy on trans-
mission and the slightly difference is caused by the additional
computation cost of KF in KF-state and KF-output, which
is hundredth or thousandth of the transmission cost. While as
the size increases, the conclusion of the comparison among
the three methods needs to be refined. For example, when
the size of the raw data is 52 bytes, the trade-off between
energy cost and reconstruction quality is shown in Fig. 16c.
In this scenario KF-raw performs even better than KF-state
in terms of the energy cost to obtain the same reconstruction
quality. This example confirms our former analyses but also
indicates that using the trade-off between transmission rate
and reconstruction quality to compare the superiority of rate
reduction techniques is not always fair. Under the same trans-
mission rate, the energy consumption of each method could
be different. In our cases, this difference is mainly caused by
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Fig. 14: The current profile of executing the 2nd-order KF 100 times visualized from the Tektronix MSO5204B oscilloscope.

CCAs

Unit TX

Repeated TX RX ACKTi

low power 
mode

Tc

2.5 ms

35 mV

Fig. 15: The current profile of the node during a communication transaction, when the CCR of the receiver is 32 Hz.

0 20 40 60

100

150

200

size of the raw data (bytes)

U
ni

t
T

X
co

st
(µ

J)

KF-raw
KF-out
KF-state
theoretical

(a)

0 1 2
0

200

400

600

800

1,000

¯̄σ (oC2)

en
er

gy
co

st
(µ

J)

KF-raw
KF-output
KF-state

(b)

0 1 2
0

1,000

2,000

¯̄σ (oC2)

en
er

gy
co

st
(µ

J)

KF-raw
KF-output
KF-state

(c)

Fig. 16: (a) The unit transmission cost of three KF methods, as the size of the raw data increases from 1 to 54 bytes; (b) An
example of the trade-off between the overall cost per transmission and the reconstruction quality as the transmission varies,
when the CCR of the receiver is 32 Hz and the size of the raw data is smaller than 12 bytes using the experimental collected
data; (c) An example of the trade-off between the overall cost per transmission, including computation and communication,
and the reconstruction quality as the transmission rate varies, when the CCR of the receiver is 32 Hz and the size of the raw
data is 54 bytes using the experimental collected data.

the transmission packet size.

V. CONCLUSION AND FUTURE WORK

This paper analyzes and compares the trade-off between
reconstruction quality and energy cost of different optimal
reconstruction methods under different transmission options,
considering the measurement noise, the transmission rate
reduction and the packet loss for linear dynamic systems.

The reconstruction quality of each method is analyzed
and formulated as a function of the system parameters, the
transmission rate and the channel loss probability. To reduce
the calculation complexity, an additional approximate solution

is provided by solving a set of AREs. The analyses are
firstly validated through an artificial generated system in the
simulation, where the exact state space representation of the
system avoids the validation biases caused by the uncertainty
of the system model. From the obtained trade-off between the
transmission rate and the reconstruction quality, KF-state has
the best performance. The gain increases as the transmission
rate decreases. For example, when the transmission rate is
p = 0.1 and the packet successfully reception probability is
λ = 0.9, KF-state decreases the reconstruction covariance of
KF-output and KF-raw by 27.49% and 44.39%, respectively.

Moreover, the physical implementation is conducted in the
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Openmotes. It confirms the former analyses in reality and
further provides the energy cost of each method including
computation and communication. The results indicate that us-
ing the trade-off between transmission rate and reconstruction
quality as a metric to measure the superiority of rate reduction
techniques is not always fair. Under the same transmission
rate, the energy cost of each method could be different. In our
experiment, the superiority of transmitting the state estimate
disappears as the packet size increases due to the heavier
communication energy cost. For example, when the size of
the raw data is 52 bytes, KF-raw consumes even less energy
than KF-state to obtain the same reconstruction quality. This
also indicates that even if the sensor node has the computation
capability, it is not always worthy to do local processing.

In addition, the three KF-based methods are compared with
CS [15] in terms of the reconstruction quality of the system
output signal. The results demonstrate their superiority for the
analyzed linear systems. For example, when the transmission
rate of the collected data equals 0.5, KF-based approaches
reconstruct the signal by 168.6% more accurate than CS [15]
and the improvement increases to 1563%, as the transmission
rate decreases to 0.1.

In the future, a more detailed model to characterize the
energy cost of each transmission content will be studied. Be-
sides the current considered parameters, such as the packet size
and the CCR, the system order and the communication hops
also affect the energy cost. These parameters will be further
integrated into the model for the performance comparison.
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